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THE EMERTON-GEE STACKS FOR TAME GROUPS, II

ZHONGYIPAN LIN

ABSTRACT. We construct the moduli stacks of potentially semistable L-parameters for tame p-adic
groups. As an application, we give a recursive description of the irreducible components of the reduced
Emerton-Gee stacks for classical groups. Our approach is grounded in a formalized framework whose
axioms were previously confirmed in a separate preprint for both ramified and unramified unitary
groups. When specialized to even unitary groups, we show the irreducible components of the reduced
Emerton-Gee stacks are in natural bijection with parahoric Serre weights.
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Introduction

Let G be a quasi-split reductive group over K that splits over F, where F is a tamely ramified
extension of Q,. Write /G = G Gal(E/K) for the Langlands dual group of G, where G is the pinned
dual group of G defined over SpecZ.

In this paper, we continue the discussion of [L23B]. We first generalize the construction of potentially
semistable moduli stacks to general groups.
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Theorem 1. (Theorem 2.6.3) Let T be an inertial type and let A be a Hodge type. There exists a p-

adic formal algebraic stack X[S(S’z&% of finite type over Spf O, which is uniquely determined as the O-flat
closed substack of Xy rc; by the following property: if A° is a finite O-flat algebra, then X[S(S’Z’GA(AO) 18

the subgroupoid consisting of L-parameters which become potentially semistable of Hodge type A and
inertia type T after inverting p.

The mod p fiber

XssvTvA

K,LG

x SpecTF
Spf O

is equidimensional of dimension dimg, G /Py.

Theorem | combined with the techniques introduced in [L.23C] allows us to classify irreducible
components of the reduced Emerton-Gee stacks Xy ¢ 1eq; see Theorem 2 below. The inputs for
Theorem 2 are, roughly speaking, the main theorems of [L.23C], but axiomized and formalized for
reductive groups of type A, B, C, or D under the terminology groups admitting a classical structure
(Definition 4.2.3).

Under the setup of Definition 4.2.3, G admits a distinguished parabolic P that is Gal(E/K)-stable,
which we call the niveau 1 maximal proper parabolic. Write “P for P x Gal(E/K) C XG. The Levi
factor “M of P is the L-group of a reductive group M = Resg /i Gm X H)y for some reductive group
Hy. Let B be a Gal(E/K)-stable Borel of G, and write B for B x Gal(E/K). We have studied
the parabolic versions of the Emerton-Gee stacks X rp in [L.23B, Section 10]. In Subsection 4.4, we

investigate the mazimally non-split part [[; X255 . 4 of Xk Lp, and conclude

Lemma 1. (Lemma /.5.0) The morphism
mns
H XK LB ired — VK LG red

i
. L . . mns . . . )
induces a bijection between irreducible components of [, XK,LB,z‘,red of maximal dimension and irre-
ducible components of X 1 red-

The group homomorphisms
LB - LP . LG

|

Ly
induce morphisms of stacks

mns
I K,LB,ired i XKyLP > XK,LG

X L

By Lemma 1, irreducible components of Xy 1 ,.q are identified with irreducible components of
mns 1 3 3 3 3 mns

11 K LB i req Of maximal dimension. We say an irreducible component of 11 K LB red (or Xk 16 red)

of maximal dimension is relatively Steinberg if its scheme-theoretic image in Xy Ly 1eq 1S 1ot an irre-

ducible component of Xy rys1eq; and we say it is relatively non-Steinberg if otherwise.
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Theorem 2. (Theorem /.5.8) Let U be the unipotent radical of “P. Assume either

e Hys is not a torus or
e there exists a surjection Resg i Gm — Hyr (for example, if Hy = Resg g G or Up).
Then the following are true.
(1) If dim U /[U, U] > 2, then there exists a natural bijection between the irreducible components of
Xk i,y red and the relatively Steinberg irreducible components of X 16 red-
(2) There exists a natural bijection between the irreducible components of X 1y 1eq and the relatively
non-Steinberg irreducible components of X 1 red-

Write U, for the quasi-split unitary group over K which splits over a quadratic extension E/K. By
the main results of [L23C], we have the following:

Theorem 3. (Theorem 5.0.2) There exists a bijection between the irreducible components of Xi 17, red
and the irreducible components of Xy i Resg i Gm X Un_2),red O Xk 117, red-

In the even unitary case, the reductive quotient of the superspecial parahoric have simply-connected
derived subgroup. As a consequence, we have the following:

Theorem 4. (Corollary 5.0.5) Assume K = Q. There exists a bijection between the irreducible
components of X 1y, rea and the parahoric Serre weights for Usp,.

1.0.1. Notations We freely use the moduli stacks constructed in [L23B], see [L23B, Table 1.7.1].
We will use dynamic methods to study parabolic subgroups, see [L.23, Section 2.1.1].
In Section 2, GG is a connected reductive group over a p-adic field K and split over F.

In Section 4 and Section 5, G is a connected reductive group over a p-adic field F' and splits over
K.

2. Moduli of potentially semistable L-parameters

2.1. Breuil-Kisin modules with G-structure

Let O D Ok be a DVR over Z,,.

Denote by k the residue field of K. Let A be a Zy-algebra. For each choice of a compatible family
/P = (7P, g . of p-power roots of a uniformizer of K in Qp, we define an embedding

(W (k) @z, A)[[u]] = Aint,a
U > [ﬂ'b]

where 7° = @wl/lﬂn c (’)E:. Denote by &, 4 the image of the embedding above.

n

2.1.1. Definition A projective Breuil-Kisin module with A-coefficients is a finitely generated projec-
tive &, 4-module M, equipped with a p-semi-linear morphism ¢op : MM — M such that 1 @ gox :
©*M[1/E ] = M[1/E ;] is a bijection. Here E_, is the Eisenstein polynomial corresponding to 7.
We say (I, pon) is an effective Breuil-Kisin module if ¢on(9T) C 9. We say a Breuil-Kisin module
(9, pon) has height h if
Elom c Im(1@M) C Eihim
b
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Following the notation of [EG23], we denote by C., ; , the (limit-preserving) moduli stack of effective
Breuil-Kisin modules of height at most h for the uniformizer = (see [EG23, 4.5.7] for the definition).

Also denote by Cﬁb, 4 the base-changed stack Cov ap @z, O/

Denote by R ; the moduli of rank-d étale p-modules for the -ring &,,[1/u], and denote by R, |
the base-changed version of R ;.

In [L23B, Section 3], we constructed the moduli stack C_, 5, of Breuil-Kisin modules with G-
structure, and the moduli stack R_, 5 of rank-d étale p-modules with G-structure. Note that when

G = GLg4, there is a canonical monomorphism

Crvah = Cro GL
as Cp» gp,, p, Classifies Breuil-Kisin modules of height h that are not necessarily effective. Moreover,
the h-th Tate twist morphism

Cwb,GLd,h i> Cwb,d,2h

sending F to F' xGt G®4(h) is an equivalence of 2-categories.

2.1.2. Canonical extensions of Galg_-actions Write K, for K (7'/P"), 0 < s < oo. We also write
K., = K to emphasize the choice of .

By Fontaine’s theory ([EG23, Proposition 2.7.8]), we can attach to a Breuil-Kisin module a (¢, Galk__ )-
module. By [EG23, Proposition 4.5.8], the Galg,__-action on a (¢, Galg,_ )-module admits a canonical
extension to Galg,, where s is any integer greater than the constant s(a,h, N) defined in [EG23,

Lemma 4.3.3] (where N > % is a fixed number). More precisely, there exists a commutative
diagram

(1) ok

-

a a
XKsyd Rﬂ'b,d

where X, = Xk, 4 @z, O/w* is the base-changed Emerton-Gee stack.

2.1.3. Proposition For each s > s(a,2h, N), there exists a commutative diagram

a
w.d,h

a
Cwb,GLd,h

7

Xf%s,d R?rb d
extending Diagram (1).

Proof. It follows immediately from the discussion before Paragraph 2.1.2. O
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2.1.4. Definition Fix once for all an embedding G < GLy. We say a Breuil-Kisin module (F, ¢p)
with G-structure has height h if (F, ¢p) x& GL4 has height h.

2.1.5. Lemma For each s > 0, the morphism

(1) Xe.a = ¥koora % Rua
r",GLd

is a closed immersion.

Proof. Write V' = G®? for the trivial vector space of rank d so that GLy = GL(V). For ease of
notation, set s = 0. Fix a finite type O/w"algebra A. XILZ(,GLd(A) is equivalent to the groupoid
of projective étale (¢, Galg)-modules of rank d with A-coefficients, and R?rb,GLd(A) is equivalent
to the groupoid of projective étale (p, Galk_)-modules of rank d with A-coefficients. An object of
Xk cL, e Rib,é(A) is a tuple

7, GLy

(M, F,0) i= (M, 61, par), (F 61, prsc)s o+ (M, dnr, pa |, ) = (6, pies) <6 V),
where (M, énr, pur) € X o1, (A) and (F, ¢F, prec) € Ribﬁ(A). A morphism
(My, Fi,11) = (Ma, Fa, 19)
is a pair (g : M1 — My, f : Fy — Fy) such that
g=13 0 (F xCV)ou.
The morphism () can be explicitly written as
(F, ¢, pr) > (F xC V, F,id).

From the description above, the morphism (7) is clearly faithful; indeed (7) is fully faithful: a G-torsor
morphism F; — F5 respects Athe Galg-action if and only if F} x& GLy — I} x% GL, respects the
Galg-action since F; — F; x& GL, is a closed subscheme (1=1,2).

By [L23B, Lemma 10.3.2], () is of strong Ind-finite type in the sense of [L23B, Definition 10.3.1].
To show (}) is a closed immersion, it suffices to show it is proper using the (Noetherian) valuative
criterion. Let A be a discrete valuation ring over F, with fraction field 2. By [Stacks, Tag 0ARL],
it is harmless to assume A is a complete discrete valuation ring; thus &, , is a disjoint union of the
spectrum of Noetherian complete regular local rings over JFp. By the Grothendieck-Serre conjecture
(see the main theorem of [FP15]), all G-torsors over S,» y are trivial G-torsors. The valuative criterion

can be checked by noticing the simple fact that é(wa7Q) NGL(G,» ) = CAJ(GWKA). O
2.1.6. Lemma The diagram

X

a N a CH
Ks,G xa Cﬂ'bvc'Ld:h Wb,G Ra Wb:GLd’h
Kg,GLg wb,GLd
a A% a ~
X s,G 7'l'b7G Rax stGLd
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is Cartesian.

Proof. Note that A ® (B®E)=A ® (B®D)®pE=A®pE. O
BgD  C BgD  C

2.1.7. Canonical extensions of Galx_-actions, the G-version
By [L23B, Corollary 3.7.2], the morphism

Cﬂ",a,h = Cﬂ’byGLdvh X Rﬂ'",@

7 ,GLy
is a closed immersion. Define the stack C?, x.én 50 that the following diagram is Cartesian
T, s,y

2 ce PO ce, 4
@) 7 Ks,Gh 7 G h

a =N a a . a

Ks,G ya x Cﬂ'vaLdvh Rﬂ'b,G R x 7°,GLg,h

Ks,GLg x0,GLy

Note that all arrows in the diagram above are closed immersions. The diagram above can be interpreted
as follows: for all Breuil-Kisin module with G-structure, the Gal K. -action can be extended to a Galg -
action canonically in a way not necessarily compatible with the @—structure; and the condition that
the canonical extension is compatible with the G-structure is a closed condition.

Define the stack ths,@,h so that the following diagram is Cartesian

ce —C

’Tl'b,s,é\,h WbaKS)éyh
a a

XK,G XKS,(A}
is Cartesian. The stack C;b Lo can be interpreted as the moduli stack of Breuil-Kisin modules
(M, pan) together with an enhancement: a (¢, Galg,)-module (M ® W (F°)4, ¢ @ 1, p) such

S.p 4[1/4]

that p G GLd\GalKS is the canonical Galg -action.
2.1.8. Lemma (1) The morphism C“ — X% . is representable by algebraic spaces, proper,

0, Ks,Goh Ks,G
and of finite presentation.

(2) The diagonal of CZb Lo s affine and of finite presentation.

7G7h

Proof. (1) It follows from the diagram (2) and [EG23, Lemma 4.5.9].
(2) It follows from part (1), [L23B, Theorem 7.1.2], and [EG23, Lemma 4.5.14]. O
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2.2. Breuil-Kisin-Fargues modules with G-structure

Let L/Q, be a finite Galois extension, Let O D Oy, be a DVR over Z,.

Denote by [ the residue field of L. Let A be a Zy-algebra. For each choice of a compatible family
l/p” = (7T1/pn)n‘gz+ of p-power roots of a uniformizer of L in @p, we define an embedding

(W) @ A)[[u]] = Aint,a
u— [7°]

where 7° = @771/ LS (9(%. Denote by &, 4 the image of the embedding above.

n

2.2.1. Definition A projective Breuil-Kisin-Fargues module with A-coefficients is a finitely generated
projective Aj,¢ 4-module Mt equipped with a ¢-semi-linear endomorphism Dopint omint — orinf such
that 1 ® ggpint : @*M[1/€] — M[1/¢] is a bijection. Here ¢ is a generator of ker(f : Ayy — Oc)
([BMS18, Definition 4.22]).

We say a Breuil-Kisin-Fargues module O™ descends to S,» 4 if there is a Breuil-Kisin module

. ¢ Gal . .

M., C (i) ¥ 00 such that Aipga ® M, = mint. We say M admits all descents over L if
Trb,A

it descends to &, 4 for every choice of 7 (for every choice of 7) and if furthermore

(1) the W(l)®z, A-submodule M, /[7°]9M . of (W(I)® A) ®Aine, 4 ominf is independent of the choice
of 7 and 7; .
(2) the O ®z, A-submodule *M .,/ E_»p* M s of Oc, A @, 4 o* M is independent of the choice

of 7 and 7.

2.2.2. Lemma The category of Breuil-Kisin-Fargues modules with A-coefficients that admits all de-
scents over L is an exact, rigid, symmetric monoidal category.

Proof. Note that the property of admitting all descents over L is preserved under tensor products and
duals. 0

2.2.3. Definition Let A be a p-adically complete O-algebra which is topologically of finite type. A
Breuil-Kisin-Fargues Galp-module with A-coefficients is a Breuil-Kisin-Fargues module (9t™f, Gopint )
with A-coefficients equipped with a continuous semilinear Galz-action that commutes with @gyint.

2.2.4. Connection to semistable Galois representations
Let M be an étale (¢, Galy)-module. By [EG23, Section 2.7], we can attach a Galy-representation
V(M) to M. By [EG23, Theorem F.11], if V(M) is semistable with Hodge-Tate weights in [0, A,
then there exists a unique Breuil-Kisin-Fargues Galz-module 9™ of height at most h that admits
all descents over L such that M™ @, W(C®) = M. Moreover, by [EG23, Proposition 4.4.1], there
e(a+h)

exists a constant s'(L,a, h, N) (where N > ~pa isa fixed constant), such that for any choice 7” with

corresponding descent 9, and for any s > s'(L,a, h, N), the restriction to Galy, , of the action of

Galy, on M™ ®p O/w® agrees with the canonical action considered in Paragraph 2.1.2.

2.2.5. Definition A Breuil-Kisin-Fargues Galy-module with A-coefficients with G-structure is a faith-

ful, exact, symmetric monoidal functor from f Repg to the category of Breuil-Kisin-Fargues Galy-
module with A-coefficients.
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2.2.6. Proposition Let F' be an étale (¢, Galy,)-module with G-structure. Then V(F) is a semistable
G-valued Galois representation of Galy, such that V(F) G GLg4 has Hodge-Tate weights in [—h, h] if
and only if there exists a (necessarily) unique Breuil-Kisin-Fargues Galp-module F™™f with G-structure
which admits all descents over L and which satisfies F = F*f @, W(C’), and such that F™f G GL4
is of height at most h.

Moreover, for any choice 7’ with corresponding descent F_, and for any s > s'(L,a,2h,N), the
restriction to Galy, , of the action of Galy on (F inf , G GL4) ®0 O/w® agrees with the canonical
action considered in Paragraph 2.1.2.

Proof. Let z €/ Repg. By [Levl3, Proposition 5.3.2, Definition 5.3.1], V(F) x¢ 2 = V(F x% ) is
semistable. Fix a choice of 7°. By [EG23, Theorem F.11], F' x& z corresponds to a unique Breuil-
Kisin-Fargues Galz-module Fi™. The uniqueness implies the association F™™ : 2 s Finf is functorial
and monoidal. Since F'™ ®4.  W(C) = F is faithful and exact and that Ay is a subring of W(C),
F»f is automatically faithful and lef-exact. It remains to show F'™ is right-exact, and we do it by the
bundle extension technique.

By [EG23, Lemma 4.2.8], Fi*f descends for each 7° uniquely to a Breuil-Kisin module FT " Since
S,» — Ay is faithfully flat, it suffices to show the functor F LN ng is right-exact. By
[Lev13, Lemma 4.2.22], the functor F’ m’ [1/p] is exact, and thus defines a p-module with G-structure
Fy over Spec &, [1/p]. The functor r~ [1/u] is also exact by almost étale descent (&[1/u] — W(C) is
faithfully flat, see [EG23, Proposition 2.2.14]), and thus defines a p-module with G-structure F over
Spec &, [1/u]. The two p-modules Fy and F5 can be glued along the intersection of Spec &, [1/p]
and Spec &, [1/u]. By [Levl3, Lemma 5.1.1] (see also the main result of [An22]), there exists unique
extension F3 of F and F> to Spec & _,. Since F3, when regarded as a monoidal functor, is forced to
be F ”b, we have finished showing F™ is a faithful, exact, symmetric monoidal functor.

The “moreover” part is [EG23, Proposition 4.4.1]. O

The proposition above motivates the following definition.

2.2.7. Definition For each h > 0 and each finite Galois extension L of F, define Cz Besh to be the
limit-preserving stack over O/w® such that for each finite type O/w"-algebra, Cl 6w h(A) classifies

Breuil-Kisin-Fargues Galj-modules F inf with A-coefficients and G-structure which admits all descents

over L such that F™™ x& GL, is of height h and is equipped with canonical Galy-action in the sense
of Proposition 2.3.3.

2.2.8. Lemma Let 773: be a compatible system of p-power roots of a uniformizer 7y of L. The
morphism

a a a
(3) LOssh ClGLyssh . X Cﬂ.b’s’@ﬁ

ca
ri,s,GLd,h

is a closed immersion.
Proof. The morphism C? — CY is monomorphism by the definition of Cfrb an By [EG23,

L,G,ss,h wb,s,@,h ,8,G,
Proposition 4.5.17], (3) is a monomorphism. Let A be a finite type O/w®-algebra. By Lemma 2.2.2

An object I’ € C:b,s,é,h(A) lies in the essential image of CZ@SSJL(A) if and only if for any x €/ Repg,
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F xC 2 admits all descents over L when regarded as a Breuil-Kisin-Fargues Galz-module with A-
coefficients. By the proof of [EG23, Proposition 4.5.17], the admitting all descents over L is a closed

condition. 0
2.2.9. Lemma CZ Gesh is an algebraic stack of finite presentation over O/w?, and have affine diag-
onals. T

Proof. 1t follows from Lemma 2.1.8 and Lemma 2.2.8. O

2.2.10. Lemma C = h$r1 Ci’ Gssh is a p-adic formal algebraic stack of finite presentation, and

L,@,ss,h :

a
have affine diagonals. The morphism C
of finite presentation.

LGssh X .G is representable by algebraic spaces, proper and

Proof. 1t is a generalization of [EG23, Theorem 4.5.20], and follows from Lemma 2.2.9 and [EG23,
Proposition 4.5.17]. O

2.3. Breuil-Kisin-Fargues lattices with ‘G-structure

Fix a uniformizer m = mg of K.
2.3.1. Lemma If F is a tamely ramified Galois extension of K of ramification index e, then 7g := 77}(/6
is a uniformizer of FE.

Proof. We first show that 7 € E’ for some unramified extension E’ of E. Let IT € Og be an arbitrary
uniformizer. We have II¢ = ¢ for some ¢ € Of,. Write ¢ € kg for the image of ¢ in the residue field
kg and write [¢] for the Teichmiiller lift of ¢. Since [¢] admits an e-th root p in an unramified extension
of E, by replacing II by IIu, we can assume ¢ = 1 + 7wz for some z € Op. Thus % —1 e lIOg. After

multiplying II by an e-th root of unity, we have % —1 € IIOg, and thus |II — 7| < |II|. By Krasner’s
lemma (see, for example, [L23B, Lemma 4.1.1]), we have ng € E'[II] = E'.
Since ¢ = 7 is an Eisenstein polynomial, K[rg] is totally ramified over K. Therefore 7y € E. O

Fix a tame Galois extension E of K of ramification index e. By the lemma above, 7 := 71/¢ is a

uniformizer of E. Let ﬂ% be a compatible system of p-power roots of . Set ° := (ﬂ%)e, which is a

compatible system of p-power roots of 7. Set u := [r°] and ug := [r},]. We have
Sxi= &y =l
GE = 6”?2 = HEHUEH

It is clear that Spec Gg[l/ug] — Spec &k [1/u] is a Galois cover with Galois group canonically iden-
tified with Gal(E/K).

2.3.2. Semistable Galois representations and Breuil-Kisin-Fargues lattices
There exists an Aj,¢-linear isomorphism

Ajns 6® Sg — HchGal(E/K) Ang
K
a®b — (ao(b))s
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The diagonal map A : Ajyr @ G — Apr, a ® b — ab is the unique Galg-equivariant A;,¢-linear
Sk

homomorphism such that the composition

a—a®1 A
Ainf —— Aint 6® Sr — Ainf
K

is the identity map. Recall that Ains = W (O ); we also need to consider the base-changed version
W(C’) 2229k yy () ©6p= W(C) ® Ap 2 w(c).
K K

Let (F, ¢p, pr) be an étale (p, Galg)-module with “G-structure over W (C?) that corresponds to an
L-parameter. By [L23B, Subsection 1.2], we have a Gal(E/K)-equivariant isomorphism

(4) F:=F x"¢ Gal(E/K) = Spec W(C") ®4,. Ap
which we fix once for all. Moreover F' — ' defines a G-torsor over £. Consider the pullback diagram

FAN———F

.

Spec W (C") 2= F

Since A is an Galg-equivariant embedding, Fa <— F is both y-equivariant and Galg-equivariant;
therefore Fa inherits a structure of étale (¢, Galg)-module with @—structure, which we write as
(Fa, @A, pa) for simplicity.

Now assume the étale (¢, Galg)-module (F,¢r, pr) with “G-structure is potentially semistable;
suppose it becomes semistable after restricting to Galy, for some finite Galois extension L of E. By
Proposition 2.3.3, the semistable étale (¢, Galr)-module (Fa, ¢a, palcal,) admits a unique Breuil-
Kisin-Fargues Gal-lattice Fiif with G-structure. Note that Fif is Galg-invariant (c.f. [EG23, Corol-
lary F.23]), and FRI is indeed a Breuil-Kisin-Fargues Galg-module with G-structure. Consider the
following pushout diagram

FAC—>F—— |] o(Fa)
ceGal(E/K)

l

FRfe———— [ o(FRY
oe€Gal(E/K)

Set Finf .— 11 J(Fglf). Concretely, OFiAnf C Op, (the structure sheaf) is an Ajy¢-submodule,

oeGal(E/K)
and Opins is by definition the sum of the Gal(E/K)-translations of O pint D Op (note that Fa is a

connected component of F' and Op, is a direct summand of Op).

2.3.3. Proposition Let F be an étale (¢, Galg)-module with “G-structure. Assume V(F) is a po-
tentially semistable IG-valued L-parameter. Then there exists a unique Breuil-Kisin-Fargues Galg-
module F™ with LG-structure which admits all descents over L and which satisfies F = F*f @,

W(CP).

inf
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Proof. By the construction above, Opint is stable under the Org-coaction on Op. In particular, F' inf
is an LG-torsor over Spec Ajys.

It remains to show F'"! is Galg-stable. It follows from Tannakian formalism and the proof of [EG23,
Corollary F.23]. O

2.3.4. Remark Given the Breuil-Kisin-Fargues Galg-lattice F™™ we can recover the Breuil-Kisin-
Fargues Galg-lattice Fxlf. Consider

Finf .= pinf "¢ Gal(E/K).

We have F™ 2 Spec A @ « ©p, and such an identification is uniquely determined by Equation (41).
The following Cartesian diagram

Fgﬁc Finf
l A_ Finf
Spec Ajpf——— F
recovers FEf from Finf,
2.3.5. Definition For each Galois extension L/F, define Cg,.. 1; to be the limit-preserving stack
over O/w® such that C§.p L 1;(A) is the groupoid of pairs (F inf ¢) where F™ is a Breuil-Kisin-

Fargues Galp-module with “G-structure with A-coefficients and ¢ is an Galy-equivariant morphism
Finf  'G Gal(E/K) = Spec Aint 4 ®a,, S, for all finite type O/w?-algebras A.
If L D F, there exists a canonical morphism

a a
BKF - K.!¢ ~ Cpxr 1.6

defined by sending (Finf7 ¢) to the pullback of F™f along ¢! o A : Spec Ajpga — F <G Gal(E/K).
Set
L/Ka _
CLG,ss,h T C]%KF -K,IG ca X R Cz,é,ss,h
BKF —L,G

and
L/K . L/Ka
CLG,ss,h T h%In CLG,ss,h
a

for all Galois extensions L/E.

2.3.6. Lemma The morphism

a

L/K,a
C L,@,ss,h

LG ss,h — XK,LG XXA C

L,G

is a closed immersion.

Proof. By Remark 2.3.4 and the construction before Proposition 2.3.3, we see the morphism is a
L/K,a

T which is a closed condition. [
G,ss,h

monomorphism. C is the Galg-stable locus of Xy ry x C¢
k) XL

_ L,é,ss,h’
,G
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L/K
LG ss,h

sentation with affine diagonal. The forgetful morphism C

is a p-adic formal algebraic stack of finite pre-
L/K
LG ss,h

2.3.7. Lemma For any Galois extension L/E, C

— X 1; 1s representable by algebraic
spaces, proper and of finite presentation.

Proof. Combine Lemma 2.2.10 and Lemma 2.3.6. 0

2.4. Inertial types Let A° be a p-adically complete flat O-algebra which is topologically of finite
type over O, and write A := A°[1/p].

Let L/K be a finite Galois extension containing £ with inertia group Ik and suppose O[1/p]
contains the image of all embeddings L — @p and that all irreducible O[1/p]-representations of Iy x
are absolutely irreducible. Write [ for the residue field of L and write Ly = W (I)[1/p].

In [EG23, Section 4.6], Weil-Deligne representations WD(9f) are attached to Breuil-Kisin-Fargues
Galg modules ™ with A°-coefficients that admits all descents over L. The underlying A-module
of WD(O™) is e, (M40 ®40 A) and it is equipped with an A-linear action of Ik (see loc. cit. for
unfamiliar notations). Here e, € Lo ®q, O[1/p] is the idempotent corresponding to a fixed choice of
embedding o : Ly — O[1/p].

2.4.1. Lemma and Definition Let A° be a p-adically complete flat O-algebra which is topologically
of finite type over O, and write A := A°[1/p].

Let F'™f be a Breuil-Kisin-Fargues Galgx modules 9™ with A°-coefficients and “G-structure that
admits all descents over L. The functor WD (Ff)

T Reprg — Vecta
z — WD(F™ x"C )
is a faithful, exact, symmetric monoidal functor.

Proof. The functor WD(F™) is clearly lax monoidal. Strict monoidality, faithfulness and exactness
are local properties. Since A° is O-flat and topologically of finite type over O, it suffices to check
the exactness (and monoidality and faithfulness) of WD(F™™f) at A-points for finite flat O-algebras A
(because the union of images of A-points of Spec A° covers all closed points of Spec A°). As is observed
in [EG23, Remark 4.6.2], in the finite O-flat coefficients situation, WD(—) can be identified with
Fontaine’s Dy functor, which is well-known to be exact (see also [EG23, Section F.24]); faithfulness
and monoidality are clear. g

2.4.2. Lemma Let A° be a p-adically complete flat O-algebra which is topologically of finite type
over O, and write A := A°[1/p].

Let F'™f be a Breuil-Kisin-Fargues Galx modules 9™ with A°-coefficients and “G-structure that
admits all descents over L. Then WD(F inf) is a G-torsor over Spec A equipped with an action of
Ir, whose formation is compatible with base change A° — B° of p-adically complete O-flat algebras
which are topologically of finite type over O.

Proof. Combine [EG23, Proposition 4.6.3] and Lemma 2.4.1. O

2.4.3. Definition Let 7 be an “G(O[1/p])-valued representation of I1/k- In the setting of Lemma
2.4.2, we say F'™ has inertial type 7 if étale locally on Spec A, WD(F™™f) is isomorphic to the base
change to A of 7.
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2.4.4. Lemma Fix a finite Galois extension L/FE. There are finitely many @—conjugacy classes of
inertial types Iy x — LG (Qy).

Proof. Since I,k is a finite group, and @p is a characteristic 0 field, all group homomorphisms
Ik — LG(Qple]/e?) factor through 1G(Q,): embed %G in GLy for some N, if g € Ik is sent to
x + ey, then (z + ey)” = 2™ = 1 for some positive integer n, and thus y = 0. Therefore, deformation
theory is trivial in our context.

By the proof of Lemma 2.4.5 below (which makes use of only affine GIT theory and there is no
circular reasoning), the coarse moduli space of all @—conjugacy classes of inertial types I/ — Ia (@p)
is a finite type scheme over @,. So we are done. O

2.4.5. Lemma In the setting of Lemma 2.4.2, we can decompose Spec A as the disjoint union of
open and closed subschemes Spec A™, where Spec A is the locus over which F™ has inertial type
7. Furthermore, the formation of this decomposition is compatible with base change A° — B° of
p-adically complete O-flat algebras which are topologically of finite type over O.

Proof. We start with analyzing the (coarse) moduli of inertial types. Say I,/ = {1,...,zN} consists

of N elements. Consider the conjugation action of é@p on the N-tuple
LAWN) Ly Ly
G@p ="Gg, X - X Gy,

Write LG((@N) / é@p for the GIT quotient. By [BMRT11, Theorem 1.1] (which allows disconnected
p

groups), if x1,...,zy generate a finite subgroup of LG(QP), then the orbit GQp (z1,...,2zN) is closed

in Lg@"

Qp - _

GIT quotient is a closed point. Inertial types Iy, /x — LG(Q,) corresponds to tuples (z1,...,zy) that

Since the affine GIT quotient is a good quotient, the image of é@p - (x1,...,zN) in the

satisfy a finite number of equations imposed by the group laws; write X C LG(E@N) for the closed affine
subscheme corresponding to inertial types. For each (z1,...,zn) € X, {z1,.. Z: Zn} generate a finite
subgroup, and thus X // @@p is an orbit space. Since there are only finitely many conjugacy classes
of inertial types by Lemma 2.4.4, X // CA}'@p is zero-dimensional and is thus a disjoint union of points.
By descent, X // G defined over O[1/p] is also a zero-dimensional affine variety. Since the formation
of WD(F™) is compatible with base change, the functor of points interpretation yields a canonical
morphism Spec A — [X/ CAJ] - X/ G. The decomposition Spec A = II Spec A7 is the base change of
the corresponding decomposition on X // G. O

2.5. p-adic Hodge types Next we analyze p-adic Hodge types. By the geometric Shapiro’s lemma
[L23B, Proposition 7.2.4], there is no difference in working with G or Resy /0, G- For ease of notation,
we will often replace G by Resg /g, G and insist K = Qp.

Recall the following characterization of cocharacters.

2.5.1. Lemma ([Bal2, Lemma 3.0.10]) Let H be a split connected reductive group over E and let
i, i’ be two cocharacters of HQp defined over E. If for any algebraic representation x : H — GL(V),
cocharatcers x o and z o i/ are conjugate by an element of GL(V)(Q,), then u, ' are conjugate by
an element of H(Q,).
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2.5.2. Corollary Let H be a split connected reductive group over E. Let F' be a trivial H-torsor
over E. Let n, 7' be two exact ®-filtrations on F. If for any algebraic representation x : H — GL(V),
cocharatcers x on and z o' are conjugate by an element of GL(V)(Q,), then 7, 7’ are conjugate by
an element of H(Q,).

Proof. By [SNT72, 1V.2.4], both 7, 1’ are splittable exact ®-filtrations, that is, they both are the
canonical filtrations attached to exact ®-gradings 77, 7 on F. An exact ®-grading 7] is equivalent to a
cocharacter i : G,, — Aut®(F). Since F is a trivial torsor, a choice of trivialization induces a group
scheme isomorphism Aut®(F) = H and the choice of trivialization does not affect the conjugacy class

of the composition Gy, - Aut® (F') 2 H, which we also denote by 77 by abuse of notation.

We remark that two filtrations 7, 1’ are H-conjugate if and only if two corresponding cocharacters
w, p' are H-conjugate. Indeed, two cocharacters jq, po induce the same filtration if and only if they
are conjugate by an element of MSI(F ) which is a closed subgroup scheme of Aut®(F'). See [BG19,
Section 2.7] for unfamiliar notations.

The corollary now follows from Lemma 2.5.1. g

2.5.3. Conjugacy classes of filtrations and Hodge types Recall that in [EG23, Definition 4.7.7],
A Hodge type of rank d ) is defined to be a set of tuples of integers {)\U,j}g:K%@p,lngd with A\, ; >

Aoj+1. It is clear that rank-d Hodge types A are in one-to-one correspondence with Res@GLd—
conjugacy classes of cocharacters of ResI;Q?GLd.

So Hodge types for G should be defined as conjugacy classes of cocharacters of Re% G. Asis
explained at the beginning of this subsection, it is harmless to replace G by Resg /g, G, so Hodge

types become conjugacy classes of cocharacters of Re% G.

2.5.4. Definition Let A° be a p-adically complete flat O-algebra which is topologically of finite type

over O, and let F'™ be a Breuil-Kisin-Fargues Galg-module with G-structure of height at most h,
which admits all descents over some finite extension L of E.
Let A : G, — G@p of a cocharacter of G@p. We say F'™ has Hodge type A if for all algebraic

representations f : G — GL(V), Finf %GV has Hodge type Ao f in the sense of [EG23, Corollary
4.7.8].

2.5.5. Lemma Fix a number C' > 0. Fix an embedding i : G — GLpy. There exists only finitely

many conjugacy classes of cocharacters A of @@p such that A\ o4 correspond to a tuple of integers
{N\i1,..., AN} such that each \; o has absolute value bounded by C.

Proof. Clear. g

2.5.6. Lemma In the context of Definition 2.5.4, we can write Spec A as a disjoint union of open
and closed substacks Spec A2 over which F'™ is of Hodge type A. Moreover, this decomposition is
compatible with base change A° — B° of p-adically complete flat O-algebras which are topologically
of finite type over O.

Proof. By Corollary 2.5.2, for any two non-equivalent Hodge types A and ), there exists an algebraic
representation f such that Ao f and Ao f are not conjugate.
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Since Spec A is topologically of finite type, there are only finitely many Hodge types occuring on
Spec A (by Lemma 2.5.5, the claim reduces to the GLy-case, which is well-known). In particular,
we can choose finitely many different algebraic representations f1, ..., f;, that distinguish all Hodge
types occuring on Spec A4, in the sense that for any two non-equivalent Hodge types A and )\, there
exists an algebraic representation f; (1 <1i < m) such that Ao f; and A o f; are not conjugate.

The lemma has thus been reduced to the GL,-case, which is dealt with in [EG23, Corollary 4.7.8],
since Spec A2 is the intersection of Spec A2°fi 1 < i < m. d

2.5.7. Corollary In the context of Definition 2.5.4, we can write

Spec A = H Spec AAT
AT

where Spec AM7 is the locus over which F™ is of Hodge type A and inertial type 7. Moreover, this
decomposition is compatible with base change A° — B° of p-adically complete flat O-algebras which
are topologically of finite type over O.

Proof. Combine Lemma 2.5.6 and Lemma 2.4.5. O

2.5.8. Remark (1) By Lemma 2.5.1, there is an intrinsic characterization of Hodge types for Breuil-
Kisin-Fargues modules with G-structure. The Hodge filtration on the de Rham periods ([EG23,
Definition 4.7.6]) is exact and ®-compatible, and thus defines an exact ®@-filtration p on Dgg (F™).
The clopen Spec A2 in Lemma 2.5.6 is precisely the locus of Spec A where y is conjugate to A at all
closed points.

(2) The formation of Hodge types is not sensitive to restriction of fields. So we say a Breuil-
Kisin-Fargues Galg module with “G-structure has Hodge type A if when restricted to Galg, it is a
Breuil-Kisin-Fargues Galp module with G-structure and Hodge type A.

2.5.9. Definition Write Cfélssﬂfl for the maximal O-flat substack of C

for the existence). We record the following proposition.

L/K

Loasn (s0e [EG23, Appendix A]

L/K Al
LG ss,h
which is uniquely characterized by the following property: if A°
L/K A L/Kf

LG ss,h LG ss,h A, T

corresponding Breuil-Kisin-Fargues F™™ has Hodge type ) and inertial type 7.
L/K A
LG, ss,h,\,T

and whose diagonal is affine. The natural morphism C

2.5.10. Proposition Let L/E be a finite Galois extension. Then C is the scheme-theoretical

L/KA
LG ss,h \, T’

is a finite flat O-algebra, then an A°-point of C

union of closed substacks C

factors through C if and only if the

is a p-adic formal algebraic stack of finite presentation which is flat over Spf O

L/KA
LG ss,h A, T

Moreover, C

— Xk 1 1s representable by algebraic
spaces, proper, and of finite presentation.

Proof. The proof is formally identical to that of [EG23, Proposition 4.8.2]. O

2.5.11. Definition Let 7 be an inertial type and let A be a Hodge type. Let h be a sufficiently large
integer such that A o ¢ is bounded by h (where 7 is the fixed embedding G — GLg4), and let L/E be a

Galois extension such that 7 is trivial when restricted to I;. Define X IS(SLAGT to be the scheme-theoretic
L/Kfl

image of CLG,ss,h,A,r

in XK,LG‘
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2.6. Potentially semistable deformation rings Recall the following theorem about Galois defor-
mation rings.

2.6.1. Theorem ([BG19, Theorem A], [Bal2, Theorem 3.0.12]) Let 7 be an inertial type, and let A
be a Hodge type. Fix a mod p L-parameter p : Galg — “G(F). The framed potentially semistable
deformation ring RE’T’A is equidimensional of dimension

1+ dirn@p é + dim@p C/;\/PA

where Py := Aut®()) is the parabolic subgroup of G which stabilizes the exact ®-filtration associated
to v. (See [BG19, Section 2.7] for unfamiliar notations.)

Denote by RE the universal deformation ring. The potentially semistable deformation ring RE’T’A is
the unique O-flat quotient such that for any finite local O[1/p]-algebra B, any O[1/p]-homomorphism
C: RE — B factors through RE’T’A if and only if ¢ corresponds to an L-parameter p; : Galg — IG(B)

that is potentially semi-stable of inertial type 7 and Hodge type A.

Proof. The first paragraph is [BG19, Theorem A]; the second paragraph is [Bal2, Theorem 3.0.12].
We remark that in [BG19], any non-split group G is allowed. In [Bal2|, only split groups G are
considered. However, the same argument works through as long as inertial types can be constructed,
which we have done in Subsection 2.4. We also remark that [BG19] directly uses results of [Bal2] even
though the setting of [BG19] is more general. O

2.6.2. Lemma Assume E/Q, is tame. In the setting of Theorem 2.6.1, the morphism Spf RE’T’A —

X 1 factors through a versal morphism

O,m,A $8,T,A
Spf R;"° — XK,LG .

Proof. The proof is formally identical to that of [EG23, Proposition 4.8.10]. The inputs are
Algebraicity of X x; (the main theorem of [L23B]);
Ljxa (Proposition 2.5.10);

LG ss,h N\, T
Description of finite O-flat points of Spf R (Theorem 2.6.1); and

B
Existence of Breuil-Kisin-Fargues lattices.

The last bullet point in the GLg4-case is [EG23, Theorem 4.7.13], which holds for general (split) groups
G, as is observed in the thesis of B. Levin (see the proof of [Lev13, Proposition 5.4.2]). The non-split
group case follows from the split group case (see the proof of Proposition 2.3.3). O

Description of finite O-flat points of C

2.6.3. Theorem Assume E/Q, is tame. Let 7 be an inertial type and let A be a Hodge type. Then
SS,TvA

XK,LG’

determined as the O-flat closed substack of X 1 by the following property: if A° is a finite O-flat
SS,T,A

XK,LG

semistable of Hodge type A and inertia type 7 after inverting p.
The mod p fiber

is a p-adic formal algebraic stack which is of finite type and flat over Spf O. It is uniquely

algebra, then (A°) is the subgroupoid consisting of L-parameters which become potentially

X;zGA X SpeclF
) Spf O

is equidimensional of dimension dimg, G/ P;.
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Proof. The proof is formally identical to that of [EG23, Theorem 4.8.12]. The first claim follows from
Proposition 2.5.10, [L23B, Theorem 2] and [L23B, Proposition A.21]. The description of finite O-flat

points X[S(S’%A(AO) follows from Lemma 2.6.2. The uniqueness follows from [EG23, Proposition 4.8.6].
7 0,7,

The dimension calculation follows from Theorem 2.6.1 and the versality of Spf R;" = established in
Lemma 2.6.2 (compare with [EG23, Theorem 4.8.14]). O

2.7. The semistable Shapiro’s Lemma

2.7.1. Theorem Assume E is tame over Q,. Under the identification ([L23B, Proposition 7.2.4])

Sha . XK,LG = XQP,LRGSK/QP G

we have
XSS,T,A 488, Sha(7), Sha())
K,LG - QP,LRGSK/QP G :
Proof. 1t follows from the uniqueness part of Theorem 2.6.3. OJ

2.8. Applications to tori

2.8.1. Lemma Let T be a torus over K. An L-parameter p : Galx — IT(F,) admits a lift p : Galg —
LP(W (F,)) which is potentially semistable of trivial Hodge type.

Proof. By the local Langlands correspondence for tori, there is a functorial bijection between L-
parameters and continuous characters of T'(K). See [L23, Section 5.2]. A character T(K) — F)

admits the Teichmiiller lift 7'(K) — W (F,)*, which corresponds to a potentially semistable of trivial
Hodge type. O

2.8.2. Corollary Let T be a torus over K which splits over a tame extension E/Q,. Write 0 for the

trivial Hodge type. Then Xip .4 is the disjoint union of XLS,?T’Q x SpecTF for various tame inertial
’ Spf O
types 7.

As a consequence, Xy .4 is equidimensional of dimension 0.
Proof. By Lemma 2.8.1, I, X, Ls,;T’Q x SpecF — Xip oq is surjective. It remains to show the images
Spt © ’

x SpecF are disjoint. Since they are reduced algebraic stacks, it suffices
Spf O

to show their F,-points are disjoint. Suppose p; € XLS,?H’Q(IF‘I,) and py € Xf;lm’g(ﬁ‘p). Write [—]
for the Teichmuller lift considered in the proof Lemma 2.8.1. We have [p1] € Xf;lTl’Q(W(IF‘p)) and
[p2] € X[S;TQ’Q(W(I_FP)). Since both [p1] and [p2] have finite image, we have WD([p1]) 2 p1|wy @k Q,

and WD([ﬁg]) = pz‘WK KK @p. Thus [ﬁl‘[K] =7 and [ﬁ2|[K] = 79, and p; = pg implies 7 = To.
The second paragraph follows from Theorem 2.6.3. O

of the various XLS,;’T’Q

3. Remarks on disconnected reductive groups

In this section, we compile results on parabolic subgroups of disconnected groups for a lack of
reference. We are specifically interested in groups that can be written as a semi-direct product of a
connected reductive group and a finite group.
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3.0.1. Lemma Let H be a connected reductive group over an algebraically closed field. The inter-
section of two Borels of H contains a maximal torus of H.

Proof. Tt follows immediately from the Bruhat decomposition. Fix a Borel pair (B,T') of H. Since all
Borels are conjugate, any Borel B’ can be written as gBg~', g € H. Write g = bjwby where by, by € B
and w € Ny (T). We have BN B’ = by(wBw™" N B)b;'. Tt is clear that b;Tb;' C BN B'.

O

3.0.2. Corollary Let H be a connected reductive group over Fp. Let I be a finite group of prime-to-p
order acting on H.
Then two I'-stable Borels of H have a common I'-stable maximal torus.

Proof. Let B and B’ be I'-stable Borels. By Lemma 3.0.1, there exists a maximal torus T C BN B'.

Pick v € . We have v(T) = uTu ! for some u € U (the unipotent radical of B) since all maximal
tori of B are conjugate to each other. Write s for the order of v. We have v*(T') = u*Tu™° = T. Thus
u® € Ng(T)N B = T. On the other hand, the unipotent radical U is a (union of finite) p-group(s).
Thus w?" = 1 for some positive integer n. By Bézout’s Lemma, 1 = as + bp™ for a,b € Z. We have
u=(u®)* €T, and thus v(T) =T. O

3.0.3. Lemma Let H be a connected reductive group over an algebraically closed field. Let M C H
be a maximal proper Levi subgroup. Then there are exactly two parabolics P, ) of H containing M,
and PNQ =M.

Proof. Let T C M be a maximal torus and let {aq,...,a,} be a base of the roots R(H,T). Write
M = Zy()\) for some cocharacter A : G, — T. Since M is a maximal proper Levi, (A, a;) = 0 for
all but one «;. Let’s say (A, a1) # 0. A parabolic P of H contains M if and only of P is of the form
Py (p) for some cocharacter p : G, — T such that (u, ;) =0 for all ¢ > 1 and (u, 1) # 0.

After possibly replacing p by p~!, we assume n, := (u,a1) and ny := (X, a1) both have positive
signs. Since n,A and nyp differ by a central cocharacter, we have Pg(A) = Pg(ny,A\) = Pa(napn) =
P (p).

Thus Py (\) and Py (A1) are the only two parabolics containing M. O

The lemma above has the following extension.

3.0.4. Lemma Let H be a connected reductive group over an algebraically closed field, equipped
with a pinning (B, T,{X,}). Let T be a finite group acting the pinned group (H, B,T,{X,}).

Let M C H be a maximal proper I'-stable Levi subgroup. Then there are exactly two parabolics
P, Q of H containing M, and PNQ = M.

Proof. While maximal proper Levi’s of H corresponds to elements of the base A(B,T), maximal
proper I'-stable Levi’s of H corresponds to I'-orbits of the base A(B,T). The rest of the proof is
the same as that of Lemma 3.0.3. The two parabolics corresponds to the sign of the cocharacter
A : Gy, — T on the chosen I'-orbit of A(B,T). O

3.0.5. Lemma Let H be a connected reductive group over an algebraically closed field, equipped
with a pinning (B, T, {X,}). Let I" be a finite group acting the pinned group (H, B,T,{X,}).
If P and @ are maximal proper I'-stable parabolic subgroups of H, then one of the following is true:
« P=Q,
e PNQ is a Leviof P, or
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e there exists a Levi subgroup M C P such that M N @ is a maximal proper parabolic of M.
Equivalently, the image of PN Q in P/U = M (where U is the unipotent radical of P) is a
maximal proper parabolic of M.

Proof. By Lemma 3.0.1, there exists a maximal torus T C PN Q. There exists characters A, pu: G, —

T such that P = Pg(\) and Q = Pg()) (see, for example, [Sp98, Proposition 8.4.5]). Moreover,

M := Zg()) is a Levi subgroup of P. We have M NQ = M N Pg(u) = Py(p) is a parabolic of M.
IfMNQ = M, then M C PNQ and thus by Lemma 3.0.4, we have either P = Q or PNQ =M. U

4. A recursive classification of the irreducible components of X .4

Starting from this section, we assume G is a reductive group over F' that splits over K (whereas in
previous sections G is defined over K and splits over E), for consistency of notation with [L23].

4.1. Remarks on classical reductive groups
In this paper, we are interested in quasi-split forms of groups G whose Dynkin diagram is one of
the following
Type A eoe-eeo |Type B oo o oxe

Table 4.1

We assume G is defined over a p-adic field F' and splits over a tame extension K of F. We will
exclude the triality, and assume Gal(K/F) acts either trivially, or acts as a reflection on Dynkin(G).

For simplicity, if D is the Dynkin diagram of GG, we denote by Resy r D the Dynkin diagram of
RGSK/F G.

Let v be a vertex of Dynkin(G). After removing the Gal(K/F)-orbit of v from Dynkin(G), we get
the Dynkin diagram of a maximal proper Levi subgroup M of GG. By inspecting Table 4.1, we conclude
that if Dynkin(G) = X,,, then

RGSK/F Ak I Xn—2—2k X=A

Dynkin(M) = B
AkHXn—l—k X—B,C, or D

for some integer k. We will denote such a Levi subgroup M by M} and say it is of niveau k.

4.2. An axiomatized framework
In order to deal with classical groups including U, SO, Sp,,, and Spin,, simultaneously, we formu-
late a formal framework in this subsection.

4.2.1. Embedding into general linear group Although it is completely unnecessary for our ar-
guments to work, we do opt to fix a natural embedding into a general linear group to simplify our
exposition.

If we have an embedding into a general linear groups, we can freely use matrix notations throughout
this section; if we don’t, the same argument still works but we will have to use abstract and unintuitive
notations which hurt the readability of the proofs.
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4.2.2. Definition Let G be a connected reductive group over a p-adic field F' which splits over a
tame extension K/F.

Fix an action of Gal(K/F) on GLy which fixes a pinning of GLy and form a semidirect product
GLy x Gal(K/F). Let 1g : "G — GLy x Gal(K/F) be an L-embedding.

A maximal proper Levi subgroup M of G is said to be (ig-)classical of niveau k if M = Resg/r GLr, X Hy
for some reductive group H)y, and for all parabolic “P D M, we have, up to GLy-conjugacy,

[GLy, * % |
16("P) GLy ok + | x Gal(K/F),
| GLy |
o -
wa(EM) GLy_o . x Gal(K/F),
Ly
[GLy
Lg(LResK/F GLy) C In_op x Gal(K/F), and
GLy
L
we(MH ) © GLy_o x Gal(K/F).
x1,

Here xI;, means all k¥ x k non-zero scalar matrices.
We also say conjugates of LM are classical of niveau k in 'G.

4.2.3. Definition A classical structure of G is an L-embedding 1 : ‘G — GLy x Gal(K/F) such
that

(CS1) all proper maximal Levi subgroups of G are classical of niveau k for some k, and

for each parabolic L-parameter p : Galp — LG(FP), there exists a maximal proper parabolic P c G
such that

CS2) p is a Heisenberg type extension of some L-parameter py; : Galp — LM (F LL23C, Section
p P p

5]);
(S3) the composition Galp 24 LM — LRes GLy is elliptic;
( p K/F PpUIC;
B Iy Matyy(n—ok) Matgx
(CS4) if we endow U(F)) C In_op Mat(y_ox)xr | With Galp-action through pps com-
p
posed with the adjoint action, then there exist isomorphisms
o s H*(Galg, Matyy (y—op) (Fp)) — H.(GalK,Mat(N_Qk)Xk(]Fp))
8 H*(Galg, Mat(y_gkyxk(Fp)) — H*(Galse, Maty, (nv—ax) (Fp))
such that o f = 8 o a = 1, which induces a well-defined isomorphism

> (z,0)

H*(Galg, Maty,, (v—ok)(Fp)) H*(Galp,U/[U,U|(F)),
and the symmetrized cup product (see, for example, [L23C, 3.11])
HY(Galp,U/[U,U|(F,)) x H (Galg,U/[U,U)(F,)) — H*(Galg, [U,U|(F,))
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is non-trivial unless H?(Galp, [U, U(F,)) = 0,
(CS5) 1y, i=talmy, : "Har — GLy_op x Gal(K/F) is a classical structure of Hy;.
We say a classical structure (G, 1) satisfies Emerton-Gee’s numerical criterion if
(CS6) the locus

{z| dimg, Homgai, (@ thy, (%)|Galc) = 1}

in XLy, req is €ither empty, or of dimension at most [F': Q] dim j-\IM/BﬁM -1,
where
) BFIM is a Borel of fIM,
o M = Resg,r GLx xH)y is a tg-classical Levi subgroup of G.
(CS7) the locus

{z| diml@‘p Homgan, (@, tay, (2)]Galc ) = s}

in Xp Ly, rea 1S either empty, or of dimension at most [F' : Q] dim Hy /B f,, — s~ 1fors>1,
and
(CS8) the locus of

{x|epr(z) = * X *, H2(GalK,54®64’V) # 0}

d/
in Xy peq has dimension at most [F': Q] dim ﬁM/EHM -1,
(CS9) dim Xp 1 req < [F: Qp] dim @/B@ where Bg is a Borel of G.
(CS10) all L-parameters Galp — 1G(F,) admits a de Rham lift Galp — LG(Z,) of regular Hodge-Tate
type.

We remark that (CS9-CS10) follows from (CS1-CS8) by our previous work [L23C]. The proof of
[L23C, Theorem 3] only makes formal use of (CS1-CS8). We list (CS9-CS10) in 4.2.3 for the sake of
simplicity.

The following lemma is a generalization of the fact that if a matrix has two linearly independent

* 0
eigenvectors, then it is conjugate to a matrix of the form [0 =*
0 0

4.2.4. Lemma Let G be a connected reductive group equipped with a classical structure. Let “Py

and Py be maximal proper parabolic subgroups of “G whose Levi factors “Af; and ‘M, (resp.) are
classical of niveau 1.

If Py # Py and the neutral component of Py N P, is not a reductive group, then there exists
a maximal proper parabolic /Q > Py N Py whose Levi N = X Resg/p GL2 x Hy) is classical of
niveau 2 such that the image of

LPyntPy — 1Q — *'N — “Resg/p GLy

is contained in “Resy /FT where T' is the maximal torus of GLs.
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Proof. By Lemma 3.0.5, the image of “P;nNFPy — LPy /Uy = EM 1, which we denote by P19, is a proper
parabolic of “M ;. The neutral componenet of “P15 is not a torus. Since "M = ¥ Resy /F G X Hay ),
the image of “P1y in “H M, 1s a proper parabolic, and is thus classical of niveau 1 since Lp, is.

We freely use the embedding ¢ from the definition of classicality below.

) _
1
We have “P; = Pr;(\1) and “Py = Pis(A2) where A\p @ t In_a and Ao :
1

1

. i

t * .
t — In_4 . Therefore “P; N *Py = Pri(M\1) N Prg(X2) C * ...| x % Set

1
) i
tls
w="t— IN_4 and 1Q := P.;() and we are done. O
t_llg

4.2.5. Proposition If K is tamely ramified over Q, and G admits a classical structure (we only need
(CS9-CS10) of Definition 4.2.3), then Xp 1 eq is equidimensional of dimension [F : Qp]@ /Bg-

Proof. By Definition 4.2.3(CS9), we have dim Xp 1 eq < [F: Qp]@/Ba.
Since X 16 req 18 Of finite type, finite type points are dense in Xp 1 ,0q- By [Stacks, Tag 0A21], it
suffices to show the complete localizations of Xp 1 ,oq at all finite type points have dimension at least

[F: Qp]@/Bé. By Definition 4.2.3(CS10), all finite type points have a de Rham lift of regular Hodge
type; by Lemma 2.6.2, the local dimension of Xp 1 ,eq at a finite type point is at least the dimension

of a de Rham Galois lifting ring of regular Hodge type — dim @, which is equal to [F: Qp]é /Bg. O

4.2.6. Lemma If G = G1 x G2 is a product of quasi-split tame reductive groups over F, then
XF,LG' = XF,LG'l X XF,LGQ‘

Proof. Since we have L-homomorphisms ‘G — G; and 'G; — G for i = 1,2. We can construct
morphisms Xp 1 = Xpig, X Xpig, and Xpig, X Xpig, = Xpig which are clearly inverse to each
other. =

4.3. Some nowhere dense substacks of Xi ,eq

Assume K is tamely ramified over @, and G admits a classical structure which satisfies Emerton-
Gee’s numerical criterion.

When we speak of

“the locus of ... in the moduli stack of something”,
we mean

“the scheme-theoretic closure of the scheme-theoretic image of all families of something
whose Fj,-points are of the form ... in the moduli stack of something”.
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So a “locus” is techinically always a closed substack. However, since we are interested in dimension
analysis only, it is almost always harmless to replace a “locus” by its dense open substacks.

When we speak of “the moduli of L-parameters”, we always mean “the moduli of (¢, I')-modules”
in the sense of [L23B].

When we write H®(Galp, —), we always mean (¢, I')-cohomology (or the cohomology of the corre-
sponding Herr complex).

4.3.1. Lemma Let f: X — ) be a morphism of finite type algebraic stacks over Spec[F,,.

Let Gy, act trivially on Gy, and denote by [G,, / G,,] the quotient stack. Let S = II[G,, / G| be
the disjoint union of finitely many copies of [Gy, / Gy,

Let X — S be a morphism. If for each z : [SpecF,/ G;,] < S, the scheme-theoretic image of the
fiber X x g, [SpecF,/ Gy, in Y has dimension at most d, then the scheme-theoretic image of X in Y
has dimension at most (d + 1).

Proof. Tt is harmless to assume X is irreducible. Write Z for the scheme-theoretic image of X in Y.
By [Stacks, 0DS4], we can replace X by a dense open such that dim & — dim Z = dim Xy for

all t € |X|. The lemma follows from applying [Stacks, 0DS4] to X — Y, X — S and X xg,

[SpecF,/ Gp] — V. O

4.3.2. Lemma Let “P be a classical maximal proper parabolic subgroup of “G of niveau k. Write
IM = Resf/r GLy, xHyy)

for the Levi factor of “P and denote by U the unipotent radical of “P.

Let Spec A be a reduced, irreducible, and finite type IF‘p—scheme, and let Spec A — Xp iy, rea D€
a basic morphism (see [L23B, 10.1] for the definition). Write Z4 for the scheme-theoretic image of
Spec A in Xpry,, red-

Write Z4 ¢ for the locus L-parameters of the form

(T) T k| Xk
B

in X eq Where @ is an irreducible Galk-representation and 7 X x corresponds to a [Fp-point of Spec A.
If either Z4 is nowhere dense in Xp g, req Or k > 1, then Z4 ¢ is nowhere dense in Xig yeq-

Proof. (Step 1) We first consider the part of the locus where H?(Galg,a ® 7¥) > 0. By the local
Tate duality, 7 determines & and hence 8 up to finite ambiguity. We can thus divide Z4 ¢ into finitely
many locally closed substacks where

e & and 3 are uniquely determined by 7, and where

e cither a(1) = /3, or a(1) # B holds (at all Fp-points).
Since we only care about the codimension, we can replace Z4 g by one of the finitely many sub-
stacks described above. Recall that Xprprred = XpLResy Jp GLyred X Xp Li req- The irreducible part

ell e : ell
F\LResyc/ QL red of XpLRes /i GLyred admits a coarse moduli space X " Resye GL red (there are

only finitely many irreducible mod p Galois representations up to unramified Galois characters, so

lgllLResK/F GLy.red 18 & disjoint union of finitely many copies of [Gy, / Gy,] by Schur lemma) and the
tautological map X'¢l} — Xxell admits a section (since we have natural maps

F,LRes ) p GLy,red F,LResgp GLg,red
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(G / Gin] = Gy =[Gy / Gin]). Since @ and 8 are uniquely determined by 7, we have a morphism
Zag — X?TI,ILResK/F Ly rea @0d thus we have a morphism Spec A — Z4 ¢ — Xp Lar red-

Write (Spec A)s C Spec A for the locally closed subscheme where
dim H?(Galg,a®7") = s

is constant. Denote by Z4 s for the scheme-theoretic image of (Spec A)s in Xp rys 1eq, and denote
by Zas for the scheme-theoretic image of (Spec A)s in X1y, req- Since Aut(a) is 1-dimensional, we
have

dim Z4 ps = dimZ4 5 — 1.
By (a mild variant of) [L23C, Lemma 10.8], we have

Qi

Qi

: . : 1 a(l)=8
dim Z4 ¢ < max [ dim Z +s—c+ |F: dim U + —
(o) im Z4,¢ < max ( imZps+s—c+[F:Qpdim {0 (1) £ ﬁ)
where c is the codimension of the cup product vanishing locus (see loc. cit. for the precise definition).
If @(1) = B, then by the non-vanishing of cup products (Definition 4.2.3(CS4)), we have ¢ > 1; so

—c—+ L ?(1):@ <0
0 a(1)# 3
holds under either circumstance. Thus,
(%) dim Z4 ¢ < max (dimZ4s—14+s+[F:Qp)dimU)

Put

codim Z4 ¢ := dim Xp 1 yeq — dim Z4 ¢
codim Z4 s :=dim Xprp,, req — dim Z4 5.

By Proposition 4.2.5, Xp 1 1eq 18 equidimensional of dimension [F : Qp]é /Bg, and thus

k(k—1
dlm XF,LG,red = dlm XF,LHJW,I‘ed + [F : Qp](2) + [F : Qp] dlm U

We can rewrite () as

k(k—1
codim Z4 g > m>161 (codim Zps+1—s+][F: Qp](2)>

Put ¢, = codim Z4 + 1 — s+ [F: Q)20

(Step 1-1) We first investigate the s = 1 case. We have ¢; = codim Z4 s + [F': Q)] k(kgl). It
is clear that c¢; > 0 if either codim Z4 > 0 or k£ > 1.

(Step 1-2) Now suppose k > 2.

Recall that up to “unramified twists” (see [EG23] for the precise definition), there are only finitely
many irreducible representations & of Galg of rank k. As a consequence, the irreducible locus S of
XK.GL, red 1s & disjoint union of finitely many copies of [G,, / Gy,]. Since in our setting, & is uniquely
determined by 7, there is a well-defined morphism Spec A — S sending 7 to &. Fix an irreducible
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Galk-representation &, which corresponds to a morphism z : [Spec IF'p/ Gm] — S. The scheme-
theoretic image of Spec A x5, [SpecF,/ Gy] in Xp Ly, req IS contained in the scheme-theoretic closure
of the locus

{y| dimpr HomGalK (&(_1)7 y) = 8} C XF,LHM,redv
and thus has dimension at most dim X gy, req — 5 — 1 by Definition 4.2.3(CS7). By Lemma 4.3.1, we
have codim Z4 s > s; and therefore ¢, = codim Z4 s+ 1—s+[F : Q) k(kgl) > 14 [F:Qp k(kgl) > 0.
(Step 2) Now we consider the part of the locus where dimg, H?(Galg,a® 7") = 0. For ease of

the notation, replace Z4 ¢ by the substack where H?(Galg,a ® 7") = 0.

The coarse moduli space of [Gy, /G| is Gy, and thus the coarse moduli space Spec B of the
irreducible locus of Xk g1, red is a disjoint union of finitely many copies of G;,. We thus have a
morphism Spec B — Xk g1, red- Consider the composite

Spec A x Spec B = Xi GLyred X XpLi,, red = XFRes F/K GLyred X XFLH  red = XF LM red

(see [L23B, Proposition 1] and Lemma 4.2.6). By [L23B, Lemma 10.1.1], there exists a scheme-
theoretically surjective and finitely presented morphism [[, SpecC; — Spec A ® B such that each
SpecC; — Xpipfreq 18 a U-basic morphism of a certain cohomology type. Note that Z4 ¢ is the
scheme-theoretic union of the scheme-theoretic image of Spec C; x X g req VFLPred 10 XF1G red-
It is harmless to replace Z4 ¢ by the scheme-theoretic image of

yi = Spec Cl XXF,LJW,red XF,LP,red

in Xpr;yeq- Here, we have secretly replaced Spec C; by a locally closed affine subscheme to ensure
dim H?(Galg,a ® 7V) = 0 over Z 4. Note that there exists a morphism ); — Spec C; — Spec B.

Fix a point z : Spech — Spec B and denote by Y, the fiber ); XspecBo Spech. Denote
by Z4,.G. the scheme-theoretic image of ), in XF7LG7red; denote by Z4 . the scheme-theoretic
image of SpecC; Xgpec B,z Spec Fp in Xprpreq; and denote by Zy4 ., the scheme-theoretic image of
Spec C; Xspec B,w SpecFy, in XFyLHM,red.

By possibly replacing Spec C; by the inverse image of an irreducible component of Z4, we can
assume Z, is irreducible.

There are two possibilities: Z4, = Z4 and Z4 , # Za4.

(Step 2-1) We first consider the case where Z4, = Z4. Now & is constant over Z4 ¢ and the
proof in (Step 1) works verbatim.

(Step 2-2) Finally, we consider the case where Z4, # Z4. The irreducibility of Z, implies
dim Z4, < dim Z4 — 1.

By (a mild variant of) [L23C, Lemma 10.8], we have

1
dimZA,G,;t < (dimZA’M@ —Cc+ [F : Qp] dimU + {O

Q1 Qi
=E
RN
= @I
N~

<dim Z4 pmq + [F - @p] dim U

=dimZ4, — 1+ [F:Q,)dimU

<dimZ4 -2+ [F:Qp)dimU.
By Lemma 4.3.1, we have

dimZ4 ¢ <maxdimZ4 g, + 1< (dimZ4 — 1)+ [F : Q] dim U.
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The proof in (Step 1-2) shows

k(k—1
codimZy ¢ = dim Xp 1 10q — dim Z4 ¢ > (codimZ4 — 1) + 1+ [F': Qp](2>,

and thus either Z4 being nowhere dense or k > 1 implies Z4 ¢ is nowhere dense. O

A Borel of a disconnected reductive group H is defined to be a minimal element of the set of all
big pseudo-parabolics (see [L23, Definition 2.2.5]). We warn the reader that in the literature, some
authors define Borels of H to be Borels of the neutral component H°.

4.3.3. Lemma Assume G is not a torus.
The locus of Xp 1 1eq consisting of L-parameters Galp — LG(F,) that does not factor through any
Borel is nowhere dense.

Proof. If a mod p L-parameter does not factor through any Borel, then it is either elliptic or factors
through a parabolic “Pj whose Levi is of the form X Resg/p GLg xHyr), k > 1. By [L23, Theorem
B] and Corollary 2.8.2, the elliptic locus has dimension at most 0; by Lemma 4.3.2, the locus of
L-parameters that factors through “Pj in X F LG red 18 NOWhere dense. g

By Lemma 4.3.3, to understand the irreducible components of Xp 1 ;eq, it suffices to understand
the locus of L-parameters that factors through a Borel.

4.4. The parabolic Emerton-Gee stacks: the Borel case

Let (B,T) be a Gal(K/F)-stable Borel pair of G, which exists by Corollary 3.0.2. Put /B =
B x Gal(K/F) and “T' = T x Gal(K/F). Write U for the unipotent radical of B.

Let A be a reduced finite type Fj-algebra. Let Spec A — Xp iy ,eq be a U-basic morphism. The

stack Spec A x  Xp.p is algebraic and finitely presented over Spec F,, ([L.23B, Proposition 10.1.8]).
XFLT red 7

Let B’ be another Gal(K/F)-stable Borel and put LB = B’ x 1 Gal(K/F). By Corollary 3.0.2, there
exists a Gal(K/F) stable maximal torus of G in BN B'. Say T ¢ BN B' is Gal(K/F)-stable. Put
V=UnB.

4.4.1. Lemma We have LBN LB =~V x IT.

As a consequence, Spec A X X rparp is a finite type algebraic stack over I_Fp.

XF, LT,red

Proof. Tt is clear that V is stable under the conjugation action of “T". Since U is the kernel of the
quotient map “B — T, V is the kernel of the quotient map “B N Lg' _ I,

Note that [L.23B, Section 10.1] applies to all groups that are semidirect product of a nilpotent
algebraic group and an L-group. In particular, [L23B, Proposition 10.1.8] implies Spec A X

_ Xp L7 red
X 7 LBALB' is a finite type algebraic stack over [F),. O

4.4.2. Lemma There is a stratification {X;};c; by finitely many locally closed substacks on Xp 17 1eq
such that for any reduced finite type scheme Spec A and any morphism Spec A — Xp 1y o4, the base
change

Spec A XXy 1 rod Vi = XRLT red
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is a U-basic morphism. Moreover, we can ensure if 7 # j then A; and X; have different cohomology
types (in the sense of [L23B, Section 8]).

Proof. Note that LieU = HaeRJr(Ef)

we have HY(Galp,U,(F,)) = either 0 or F, depending whether z acts trivially on U,; similarly,
H?(Galp,U,(F,)) = either 0 or F, dependlng whether x acts by the cyclotomic character on U,; by
the local Euler characteristic, dlm HY(Galp,Uy(Fp)) is determined by H? and H?.

A morphism Spec B — Xp 17 10q 18 U-basic if dimg  H*(Galp, Uq (F,)) is constant on Spec B for all
o€ RY(B,T).

The condition that = acts on U, (F)) trivially (or by the cyclotomic character) is a closed condition

U,. For each mod p L-parameter x : SpecIF‘p — Xpor,

on the moduli stack. Thus we can divide Xp 1 ;q into 3RT(BT) locally closed substacks satisfying the
required condition. O

4.4.3. Definition By descent,
XF,LB,i = XZ XXF,LT,red XF,LB
and
Xprpaep i = Xi XX 1y YpLBALE!

are both finite type algebraic stacks over IF

By the Bruhat decomposition, up to B- conjugacy, there are only ﬁmtely many Borels LB’ The
union of the scheme-theoretic image of X' LpnLg’; 1M X F.LBi for various B’ is thus a finite union of
closed substacks, and we call it the non-mazimally non-split locus and denote it by X I{lrfgsz
The complement of the non-maximally non-split locus is by definition the open substack of mazximally

non-split L-parameters, which we denote by Iff"{%’i.

mns

4.4.4. Lemma The natural morphism f : F LR

— Xp 1 is @ monomorphism.

Proof. By the geometric Shapiro’s lemma [L23B, Proposition 1], it is harmless to assume F' = Q. Let
A be a reduced finite type scheme over F, and let x4 : Spec A — FE% be a morphism.

Write fi(z4) for the composition Spec A — Xp 1.

By [Stacks, Tag 04ZZ], we want to show f is fully faithful. Since we are working with groupoids,
it suffices to look at automorphisms. Note that automorphisms in either groupoids are defined to be
automorphisms of the corresponding (¢, I')-module with “G- or “B-structure.

We claim that AUtXF,LG (fs(xn)) = AutXF,LB (xa) C E(AQP’A). Assume the contraposition, and
suppose ga € G(Ag, 1) is an automorphism of f.(z4) and g ¢ B(Ag, 4). We specialize at an IF)-point
SpecF), — Spec A such that the specialization (of g) 9, ¢ B_(AQp,Fp); and let g : SpecF, — E‘Efw
be the corresponding (¢, T')-module with “B-structure with F,-coefficients.

By the relation of (¢,I')-modules with Galois representations and Tannakian formalism, fi(zg,)

corresponds to an L-parameter Prues,) Galp — IG(F,) and the automorphism 95, & E(AQP7FP)
corresponds to an automorphism g, € G(I,) — B(F,) of py, (25,)"

By the construction of f*(a:Fp), ﬁf*(x@p) factors through “B(F,). Since 9P, (w5 ) 5 ﬁf*(xﬁp),
ﬁf*(xﬁp) also factors through gﬁLB(]F’p)gp?l. Since B is self-normalizing and g, ¢ E(F ), we know
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that ﬁf*(xﬁp) factors through two distinct Borels of “G. However, by the construction of X }nEfB ., all

Fp—points should correspond to an L-parameter that factors through a unique Borel, and we get a
cotradiction. 0

4.4.5. Lemma Assume G is not a torus.
The (finite) union of the scheme-theoretic image of Xy 1p ; eq for all i € I in Xp 16 1eq s the whole

XF,LG,red'

Proof. Tt is a restatement of Lemma 4.3.3. O

4.4.6. Lemma Assume G is not a torus. Let 1B # LB’ be Borels of 1G.
(1) The scheme-theoretic image of Xp LpLB’ ired 1N AR LG red 18 NOWhere dense.

(2) The (finite) union of the scheme-theoretic image of XpLh irea for all i € I'in Xprg eq is the
whole XF,LG,red'

(3) We have dim X205

FLB ed—dlmXFLGred fOI' aHZEI

Proof. By Lemma 4.4.5, (1) is equivalent to (2). By [Stacks, Tag 0DS4], if X — ) is a monomorphism,
dim X < dim Y, and thus by Lemma 4.4.4, (2) implies (3).
*
*

* 0 *
0 = *
By Lemma 4.2.4, ‘BN L' = [¥] ... ...| xx, and thus L-parameters that correspond to
* 0
*

Fp—points of X, LBALE'; are of the form

*

O QI
=IO
*

g0
@l

We prove (1) by induction on the rank of B. The base case of the induction is the elliptic case
which has been considered in the proof of Lemma 4.3.3. By Lemma 4.3.2, the locus of p where T is
not maximally non-split form a nowhere dense substack. Thus, we assume 7 is maximally non-split
in the rest of the proof.

(Step 1) The part where @ = 3. If @ = 3, then dimg, Homgai, (&, p) > 2 and by Definition
4.2.3(CST), the part where @ = 3 has nowhere dense scheme-theoretic image in X’ LG red-

Now we assume & # f3 in the rest of the proof. In particular, H?(Galg,a®7") and H?(Galg, Bo7")
cannot be simultaneously non-trivial since 7 is maximally non-split in the sense that it factors through
a unique Borel.

(Step 2) The part where H?(Galg,a ® 7) # 0.

Note that p factors through two Borels “B and LB" and if we interchange “B and LB the two
characters @ and 3 are interchanged. Since H?(Galg,a ® 7V) and H?(Galg,3 ® 7V) cannot be
simultaneously non-trivial, we can skip (Step 2) and proceed to (Step 3), by possibly swapping B
and B’

(Step 3) The part where H?(Galg,a ® 7V) = 0.
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(Step 3-1) The part where H?(Galg,a ® @'V) # 0. Let “P be the maximal proper parabolic of
LG containing "B that is classical of niveau 1, and denote by “M the Levi factor of “P. Recall that
M = Resg/p Gm X Hp. The locus of

B ... %
= [T] o] xx
B/
in X F.LH  red such that there are infinitely many & such that
a 0 0 O
a 0 g * 0
p= i X ok = 7] ... X
—~/ B/ O
6/

satisfies H?(Galg,a®a’") # 0 is nowhere dense in X g7, 1eq; for if otherwise, it contradicts Definition
4.2.3(CS8). By Lemma 4.3.2, we can assume for each [ there are only finitely many & such that
H?(Galg,a®a’") # 0. The finitude of the choice of & allows us to assume & is completely determined
by fi in the discussion below (by splitting this part into finitely many subparts). Running the arguments
presented in Lemma 4.3.2 once again shows the part considered in (Step 3-1) is nowhere dense. To
elaborate, fixing @ induces one codimension. The vanishing of the entry above 5 and to the right of
@ induces [K : F] codimensions. The non-vanishing of H?(Galg,a@® &'V) reduces the codimension by
1. Since H%(Galyg,a ® 7¥) = 0, the codimension is not further reduced. To sum up, the codimension
is at least (14 [K : F] — 1) > 0. See the proof of Lemma 4.3.2 for the rigorous argument.

(Step 3-2) The part where H?(Galg,a® &'V) = 0. We continue the discussion at the end of (Step
3-1). Now a is not fixed. But all H? vanish. The vanishing of the entry above 3 and to the right of
@ induces [K : F| codimensions. So this part has at least [K : F] codimensions. O

4.5. The irreducible components of Xis; .4

4.5.1. Lemma Let X and Y be algebraic stacks that are finitely presented over Iﬁ‘p. Let f: X =Y
be a scheme-theoretically dominant morphism.

If Y is irreducible and all fibers of f are irreducible and have the same dimension d (see Definition
[Stacks, Tag 0DRG]), then dim X < dimY + d and there exists at most one irreducible component
C C X such that dimC = dim X; the equality dim X = dimY + d holds if and only if such an
irreducible component C' exists.

Proof. The inequality follows from [Stacks, 0DS4]. Assume there are two such irreducible components
C and Cy. Write Y7 for the scheme-theoretic image of C7 in Y. We have dimY; > dim C; — d by
[Stacks, 0DS4]. Thus dimY; > dimY and since Y is irreducible, Y7 = Y. Similarly, if Y5 is the
scheme-theoretic image of Cs in Y, then Yo =Y.

To show Cy = C5, by descent, it suffices to show C; = C5 after a smooth base change by a smooth
cover Y/ — Y. In particular, we can assume Y is a scheme. Note that both f(C7) and f(C2) are dense
constructible subsets of Y. Since X and Y are Noetherian, the constructibility implies f(C7) (and
f(Cy), resp.) contains a dense open subset V; (and Va, resp.) of Y. Set V =V, NV f~1(V)NC) is a
dense open of C; and f~1(V) N Cs is a dense open of Cy. Since dim f~1(V) N Cy = dim f~1(V) N Cy,
we conclude f~1(V) N C; = f~1(V) N Cy by applying [Stacks, 0DS4] (fibers of f~1(V)NC; — V are
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generically irreducible of dimension d on the source and therefore generically equal; note that both
fY(V)NC; =V, i=1,2are closed in f~1(V)). Therefore, C; = Cs. O

4.5.2. Lemma Let X be a scheme of finite type over Fp. Let G be a smooth group scheme over Fp
that acts trivially on X.

If [X/G] is equidimensional, then X is irreducible if and only if the quotient stack [X/G] is irre-
ducible.

Proof. Since G acts on X trivially, the coarse moduli sheaf of [X/G] is representable by X. Thus
there exists a forgetful morphism f : [X/G] — X, which has a section, namely, the quotient map
X — [X/G]; as a consequence, if C; and Cy are two distinct irreducible components of X, then their
images in [X/G] are also two distinct irreducible components.

Conversely, assume X is irreducible. Note that all fibers of f : [X/G] — X are of the form [Spec k/G]
and are irreducible of dimension — dim GG, where & is a residue field of X. By Lemma 4.5.1, there exists
at most one irreducible component of [X/G] of dimension dim X —dim G. So it remains to show such
an irreducible exists. Since X is of finite type, [X/G] has only finitely many irreducible components;
as a consequence, there exists an irreducible component of C of [X/G] such that C — X is scheme-
theoretically dominant. Since X is a Noetherian scheme, f(C) is a dense constructible subset of X, and
thus contains a dense open U of X. By [Stacks, Tag 0DS4], dimC > dim f~!(U) = dim X —dimG. O

4.5.3. Lemma If f : X — Y is a scheme-theoretically dominant monomorphism between finite type
equidimensional algebraic stacks over IF),, then X is irreducible if and only if Y is irreducible.

Proof. Suppose X is irreducible. Let C; (i € I) be the finitely many irreducible components of Y.
Since f~1(C;) are all closed substacks of X and X is irreducible, there exists an ig € I such that
f~YCy,) = X. Since f is scheme-theoretically dominant, C;, = Y is irreducible.

Suppose Y is irreducible. Since f is a scheme-theoretically dominant monomorphism, dim X =
dimY (by [Stacks, 0DS4]). Let C; and Cy be two irreducible components of X, and let Z; and Z»
be the scheme-theoretic image of C; and Cy, resp.. By [Stacks, 0DS4] again, dimCy = dim Z; =
dim(Cy = dimZy = dim X = dimY. Since Y is irreducible, Z; = Z3. By Chevalley’s theorem on

contructibility, C; = Cs, since f(C}) and f(C3) contains a common dense open of Y. O
4.5.4. Lemma Assume p # 2. Let (—, —) be a symmetric bilinear pairing on the vector space IF‘;‘?N .
A vector of FPN can be represented by a tuple x = (#1,...,2y). The function f(x) := (x,x) is a

homogeneous polynomial of degree 2 in N variables.
Let X = SpecFplz1,...,zn]/(f(x)). If X is not an irreducible scheme, then the kernel of the
pairing (—, —) has dimension at least (N — 2).

Proof. Since SpecFp[x1,...,zy] is a PID, we can write f = gh where g and h are homogeneous
polynomials of degree 1 if X is not irreducible. We can regard g and h as elements of the dual vector
space of FYN. Equip FSV with the standard inner product and identify FPY with its dual. We have

2(x,x') = f(x+x) = f(x) = f(x) =x"(gh" + hg")x.

Therefore if x is orthogonal to both h and g, then x lies in the kernel of (—, —). We have dim(g, h)* >
N —2. U
X

In applications, we always have N > 2 and (—, —) is non-degenerate and thus the affine scheme
in Lemma 4.5.4 will be irreducible.
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4.5.5. Lemma A dense subset of an irreducible topological space is irreducible.

Proof. Suppose X is irreducible and Y C X is dense. Suppose Y = Y] UYs where both Y; and Y5 are
closed in Y. Write cl(—) for the closure in X. Since cl(Y7) Ucl(Y2) is a closed subset of X containing
Y, we have X = cl(Y1) Ucl(Y2). Thus either cl(Y;) C cl(Y2) or cl(Y1) D cl(Y2), and therefore either
Y1 C Y5 0or Y1 D Y5 since Y7 and Y are closed in Y. O

Let LB be a Borel of LG.

4.5.6. Lemma The morphism

mns
H F LB ired - XF,LG,red
7

induces a bijection between irreducible components of [], ;}E}Lre 4 of maximal dimension and irre-
ducible components of X ¢ 1eq-
Proof. The morphism [[, X FLBired — XFIGred 1S scheme-theoretically dominant by Lemma 4.4.6(2),
and is a monomorphism by Lemma 4.4.4.

It is harmless to replace [ [, X I{f}?%yi’re 4 Dby the scheme-theoretic union of its irreducible components
of maximal dimension. By Proposition 4.2.5, Lemma 4.5.3 implies this lemma. O

4.5.7. Relatively Steinberg components Let P be the maximal proper parabolic of G of niveau
1 with Levi subgroup “M and unipotent radical U. Recall that M = Resy 1k Gm X Hpy.
The group homomorphisms

LB LP LG

|

v
induces morphisms of stacks

mns
IL XF,LB,i,red > XpLp > Ap i

Xp L

By Lemma 4.5.6, irreducible components of Xp g ,eq are identified with irreducible components of
mns . . : . . mns .
ILx FLB i red of maximal dimension. We say an irreducible component of [[, X FLB i red of maximal
dimension is relatively Steinbery if its scheme-theoretic image in Xp rp/ eq 18 not an irreducible com-

ponent of Xp rpf veq-

The main theorem of this paper is the following.

4.5.8. Theorem Assume either

e H), is not a torus or
e there exists a surjection Resg/p Gy, — Hyy (for example, if Hy = Resg/p Gy, or Uy).
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Then the following are true.

(1) If dim U/[U, U] > 2, then there exists a natural bijection between the irreducible components of
Xp L, rea and the relatively Steinberg irreducible components of Xp ¢ 1eq-

(2) There exists a natural bijection between the irreducible components of Xy s eq and the rela-
tively non-Steinberg irreducible components of Xp 16 yeq-

4.5.9. Lemma If C is an irreducible component of [[; XR7; ., of maximal dimension, then its

scheme-theoretic image in Xp 1y, 1eq 18 an irreducible component.
bl k)

Proof. Let Spec A — C be a scheme-theoretically surjective, finite type morphism which is U-basic
(see [L23B, Lemma 10.1.1] for the existence of Spec A). Suppose the scheme-theoretic image Z of C' in
Xp L, red 18 DOt an irreducible component. Since Xp 1y, 1eq 18 €quidimensional, Z is nowhere dense
in Xpry,, rea- By Lemma 4.3.2; the scheme-theoretic image of Spec A in Xp 1 ,eq is also nowhere
dense. By Lemma 4.5.6, we get a contradiction. U
Proof of Theorem /.5.5. We will explicitly construct irreducible components of [ [, X ;E%Me 4 that ex-
haust all F p-points of [[, & gﬁgi’re g0 up to a nowhere dense subset.

By Lemma 4.5.9, an irreducible component C of [ [, X ;E%,i,re 4 determines an irreducible component
ZHM of XF,LHM,red'

Recall that Xprafved = XrLResy)p Gored X XFLHy red = XK,Gpred X Xp Li , red-

Write B w, for a Borel of LH . By Lemma 4.5.6, Zm,, is the scheme-theoretic image of an

. . / . /
irreducible component C” of [[ X }I;,‘}E%HM red® Write Z for Xk q,, rea X C'.

If Hps is not a torus, then Hj,; admits a niveau-1 maximal proper Levi subgroup of the form
Resg/rp Gm x7 and there exists a projection LHy — LRGSK/F Gy,. If Hps is a torus, then by our

assumption, there exists a surjection Resy/r Gy — Hy, whose dual map is LHy — LRGSK/ JC
Therefore, there exists a morphism — XK.G,red- Denote by 3 the composition C' —

mES
s F,"Bu,,,jred
FlBy,, jored XK G yred-

Similarly, there exists a morphism & : Z — X q,, red, and a morphism x : Spec Fp — Z corresponds
to an L-parameter of the form

=IO

(%)

o O O

* % O

6[,

Z can be decomposed into two locally closed substacks Z;, ¢ = 0, 1, defined so that
dim H?(Galg,a® Y) =i

over Z;.
We first consider the relatively Steinberg irreducible components, whose scheme-theoretic image in
Xp Lpf rea Will correspond to Z. First note that Z; = [Zy,,/ Gp] is irreducible by Lemma 4.5.2 (by

local Tate duality, in the matrix presentation (%), @ = (1) as Galois characters).
We can further decompose Z; into two locally closed substacks Zy;, ¢ = 0,1, such that

dim H?*(Galg,a®av) =i
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over Zq;. Note that Zqg is either empty or dense in Z; by the semicontinuity theorem. If Z; is dense
in Z1, then the preimage of Z7; in C is nowhere dense in C' and we set W1 = Zjg; it otherwise, set
W1 = Z11. By Lemma 4.5.5, since W1 is dense in Z1, W7 is irreducible. The morphism Wy, — Xp LA red
is U-basic, and the fiber product

Wi XX Lat red XF»LP

parameterizes all L-parameters for G of the form

(0}

* *
(5) g

Qi
*
QL % %

5(/

such that H?(Galg,a ® BY) # 0, except for certain L-parameters parametrized by a nowhere dense
subset of X ¢ 1eq- To show the relatively Steinberg components are in bijection with the components
Z 1, it suffices to show Wy x X g req “CFLP 18 representable by an irreducible algebraic stack of finite
type.

Before we proceed, we need the notion of relative coarse moduli sheaf. Let X — ) be a morphism
of algebraic stacks, define an sheaf A" over Sch /) which sends Spec A — Y to the coarse moduli
sheaf of X xy Spec A ([L.23B, 10.1.3]). We say &X*" is the relative coarse moduli space of X — Y if
Xsh — Y is relatively representable by an algebraic space of finite type.

By [L23B, 10.1.5-10.1.7], we have

e the coarse moduli sheaf of
XpLp/U,0) XX 1y 000 W1 W1

is relatively representable by a vector bundle Y; — W of rank tk H(Galg, U/[U,U]),
© XpipUu) XXy 0 W1 = [Y1/H(Galp, U/[U,U])]
e there exists a closed substack V; C Y7 such that the coarse moduli sheaf of

Xpip XXy 1p 0y Y1 7 11

is relatively representable by an affine bundle T3 over Vi,

Y1 = [Tl/HO(GaIF, U)]

Lt red Wi 2 [Ty xv, [Vi/H®(Galp,U/[U,U))]]/H®(Galg, [U,U])]. By Lemma
4.5.2, it suffices to show T} is irreducible. Since Wi is known to be irreducible, by Lemma 4.5.1, it

remains to show all fibers of V; — W are irreducible of constant dimension (the dimension of the fibers
is necessarily dim V7 — dim W3 because we have already known the dimension of Wi Xy, Xprp

® Xrip XX Lo

In particular, Xprp Xx,

is equal to Xp 1 eq by the equidimensionality of the latter).

Before we finish off the proof of the relatively Steinberg case, we turn to the relatively non-Steinberg
case since both cases can be dealt with uniformly. By the equidimensionality of Z, Z; is nowhere dense
in Z and Zj is dense in Z. The scheme-theoretic image of a relatively non-Steinberg component in
Xp Lpf rea 18 an irreducible component of Z, or equivalently the closure of an irreducible component
Zy, of Zy. Similarly, we can decompose Z, into two locally closed substacks Zy.;, i = 0, 1, such that

dim H*(Galg,a ® a'V) =i

over Zy;. By Definition 4.2.3(CS8), Zo,1 is nowhere dense in X 1/ ,q and thus nowhere dense in Z.
Set Wy = Zyz. Similarly define Yy, Vj and Yy by replacing W7 by Wy in the definition of Y7, Vi and Y;.
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Since dim H?(Galg,a ® @V) = 0, Vy = Yj is a vector bundle over Wy. The relatively non-Steinberg
case is reduced to the claim that all fibers of Vj — Wy are irreducible of constant dimension, which is
clearly true since Vj is a vector bundle over Wj.

Finally, we settle the relatively Steinberg case. By the proof of [L.23B, Lemma 10.1.5], V; is the
vanishing locus of a single quadratic form over the vector bundle Y;. By Definition 4.2.3(CS4), the
quadratic form is either pointwise trivial or pointwise non-trivial depending on if dim H?(Galg,a ®
@V) = 0 or 1. Thus the fibers of V; — Wj has constant dimension either dim H'(Galg, U/[U,U])
or dim H'(Galg,U/[U,U]) — 1. In the former case, V4 — Wj is a vector bundle and we are done.
In the latter case, the fibers of V; — W) are the vanishing locus of a nontrivial quadratic form on
a vector space of dimension dim H'(Galg,U/[U,U]) and are irreducible if dim H*(Galg,U/[U,U]) >
3 by Lemma 4.5.4. By the local Euler characteristic: dim H'(Galp,U/[U,U]) > dimU/[U,U] +
dim H?(Galg,U/[U,U]) > 2+ 1 = 3 since dim U/[U, U] > 2, so we are done. O

5. The topological part of the geometric Breuil-Mézard conjecture: the unitary
case

Write U, for the quasi-split unitary group over F' which splits over a quadratic extension K/F.

5.0.1. Lemma Assume p # 2. The identity map ‘U, = GL,, x Gal(K/F) defines a classical structure
in the sense of Definition 4.2.3.

Proof. (CS1, CS2, CS3, CS5) are clear: see [L23C, Theorem 2]. (CS4) is discussed in [L23C, Section
7]. The isomorphisms «, # in Definition 4.2.3(CS4) are given by the natural Galois involutions, see
[L23C, Lemma 7.3].

(CS6, CS7, CS9): it is [L23C, Theorem 4]. (CS10): it is [L23C, Theorem 5].

(CS8) follows from (CS9) by induction on the rank of G. O
5.0.2. Theorem There exists a bijection between the irreducible components of Xp 1y, .q and the
irreducible components of Xp e, /5 G XUp_2red U Xp i, red:

Proof. Tt follows immediately from Theorem 4.5.8. Note that dimU/[U,U]| = 2(n—2) > 2ifn > 2. O

In the case of even unitary groups, the irreducible components are in bijection with parabolic Serre
weights.

5.0.3. Corollary Assume F' = Q,. There exists a bijection between the irreducible components of
Xp 117,,, rea @and the parahoric Serre weights for Ugy,.

Proof. Recall that the superspecial parahoric G,,, of Uy, is either Uy, or Sps,,, depending on whether
Uy, is ramified or not. In either case, G,, has simply-connected derived subgroup and the weight
lattice of G,, coincides with the coroot lattice of G,,,.

We refer to [L23, Section 6.1] for the notations for Serre weights.

We first consider the ramified case. Since G,, is semisimple, the set of (isomorphism classes of)
parahoric Serre weights for Uy, are in bijection with p-restricted roots X;(T,,) of G,,. Here T,,
is a maximal torus of G,,. Write wi, ..., wy, for the fundamental weights of G,,. Note that wy,

.+, wm—1 are the fundamental weights of Spy(,,_1), and thus X1(Z,,,) = X1(Z,,1) x {0,1,...,p}.
By induction on m, the irreducible components of Xp 1, (m_1),red aTe in bijection with X;(T,,_;).
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The irreducible components of Xp rgeg,. /5 Gmyred COTTEspond to inertial types Ix — F , which are

powers of the fundamental character xip|r,, @ = 0,...,p — 1. Here xrr : Galg — F;; is the Lubin-
Tate character. We have thus identified the relatively non-Steinberg components of Xp 7, = 1oq With
X1(T,,—1) x {0,1,...,p — 1} and identified the relatively Steinberg components of Xp 1y, eq With
with X4 (T,,_) x {p} by Theorem 5.0.2
Next, we consider the unramified case. Now G,,, is not semisimple. The isomorphism classes of
parahoric Serre weights for Uy, are in bijection with X1(T,,)/(p — 7)X°(T,,) where T,, is a Galois
stable maximal torus of G,,, and 7 is the Galois action on T',,. Write wy, ..., wa;,—1 for the fundamental
weights of G,,. Note that wa, ..., wan—_2 are the fundamental weights of SU2(m_1). More concretely,
the character lattice and the cocharacter lattice of G,,, can both be identified with 79?2 Write ey,
.., €y, for the standard basis vectors of Z#2™ (so e; = (0,...,0,1,0,...,0) whose only non-trivial
entry is the i-th entry); the roots are e; —es, €2 —es, ..., €21 — €2; the fundamental weights are eq,
e1t+es, ...,e1+---+eam_1. Wehave Xo(T,,,) = Z(e1+ea+---+eam). Thus X1(T,,)/(p—7)Xo(L,,) =
X1(Lpy 1)/ (p=T)X0(Lpn 1) % {0, p} X {0, .o P} = X3(Ly 1)/ (p— 1) Xo(Tyn) X {0,....,p°—1}.
The irreducible components of XpLRes, /5 Gored correspond to inertial types I K — ]F , Which are

powers of the fundamental character XLT| I, 1 =0,. ,p? — 1. Here xr : Galg — IF; is the Lubin-
Tate character. We have thus identified the relatively non-Steinberg components of Xp i, = 0q With
X1(T,,— 1) x{0,1,...,p* — 1} and identify the relatively Steinberg components of Xpry, eq With

with X1(T,,_1) X {p} by Theorem 5.0.2. O
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