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Abstract. We show a Galois representation valued in a parabolic subgroup of a reductive group is
crystalline if it is crystalline modulo the unipotent radical, and has enough gaps in Hodge-Tate weights.
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Let K/Qp be a local field. Let GK be the absolute Galois group of K. Let E be a finite extension
of Q with ring of integers O and residue field F.

We prove the following:

Theorem. (Corollary 2.4.3) Let G be a connected reductive group. Let P be a parabolic subgroup
of GE with unipotent radical U and Levi quotient L. Let ρ : GK → L(E) be a crystalline Galois
representation with enough gaps in Hodge-Tate weights with respect to P (subsection 2.4.1). Then any
parabolic lifting ρ̃ : GK → P (E) is crystalline.

Here a parabolic lifting is a commutative diagram

GK
ρ̃ //

ρ

""

P (E)

{{
L(E)

We prove the theorem by reducing it to the GLN -case via dynamic methods. The caveat is, the
property of “having enough gaps in Hodge-Tate weights”, is not preserved under dynamic methods.
So we must pass to the category of weakly admissible filtered φ-modules, and use dynamic methods
indirectly.

1. Preliminaries

1
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1.1. p-adic Hodge theory Let E/Qp be a p-adic field with ring of integers O. Let G be a smooth
connected group over O. Let ρ : GK → G(O) be a group homomorphism. We say ρ is crystalline
if for all algebraic representations G → GLN , the composition GK → GLN (O) is crystalline in the
usual sense.

1.1.1. Theorem The representation ρ is crystalline if and only if for some faithful embedding G →
GLN and some finite extension L/E, the map IK → GK

ρ−→ G(O)→ G(OL)→ GLN (OL) is crystalline.

Proof. By [Le13, 5.3.2], we only need to check a single faithful embedding G ↪→ GLN . By [BC08,
9.3.1], we only have to look at the inertia. �

1.1.2. Lemma Let T be a smooth connected subgroup of G. Assume ρ : GK → G(O) factors through
T (O). Then ρ is crystalline as a G-valued representation if and only if it is crystalline as a T -valued
representation.

Proof. Choose an embedding G ↪→ GLN . The lemma follows by applying the theorem above twice. �

1.2. Exact ⊗-filtrations We review notions that are necessary for our general construction.
Let C be an ind-tannakian category ([SN72, III 1.1.1]) over a ring A. Let VectA be the category of

projective A-modules. Let ω : C → VectA be an exact tensor functor. For X ∈ VectA, a filtration of
X indexed by Z is an tuple (FilnX)n∈Z where FilnX ∈ VectA, FilnX ⊃ Filn+1X, ∩FilnX = 0, and
∪FilnX = X. Let Fil VectA be the category of filtered (indexed by Z) projective A-modules.

An exact ⊗-filtration F on ω is a factorization

C
ω //

ω̃

$$

VectA

Fil VectA

forget
99

such that the following are satisfied:

(FE 1) For X ∈ C , Filn ω̃(X) is a direct summand of ω(X);
(FE 2) The associated graded functor grF (ω̃) is exact.
(FE 3) For all n ∈ Z, X,Y ∈ C ,

Filn ω̃(X ⊗ Y ) =
∑
i+j=n

Fili ω̃(X)⊗ Filj ω̃(Y ).

Let ω, ω′ be exact tensor functors with exact ⊗-filtrations F , F ′, respectively. Denote by

Isom-fil⊗((ω, F ), (ω′, F ′))

the functor of tensor isomorphisms inducing an isomorphism of filtrations. Set

Aut⊗(F ) := Isom-fil⊗((ω, F ), (ω, F ))

for simplicity of notation. Denote by Aut⊗!(F ) the subfunctor of Aut⊗(F ) which induces the identity
of the associated grading.
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1.3. Splitting of exact ⊗-filtrations Let gr VectA be the category of graded vector spaces. An
exact tensor functor ω : C → gr VectA induces a canonical exact ⊗-filtration Fcan, which is defined as
Filn(ω(X)) :=

∑
n′≥n grn′ ω(X) for all X ∈ C .

An exact ⊗-filtration is said to be splittable if it is isomorphic to the canonical exact ⊗-filtration
associated to a graded exact tensor functor.

2. Extension of weakly admissible filtered φ-G-torsors

2.1. Filtered φ-G-torsors and crystalline representations

2.1.1. Definition Let K/Qp be a finite extension. Let K0 = W (k)[1/p] where k is the residue field
of K. Let E be a sufficiently large coefficient field (admitting an embedding of the normal closure of
K). A filtered φ-module with coefficients in E is a triple (D,φD, θD) where

- D is a finite free module over K0 ⊗Qp E;
- φD : (φ⊗ 1)∗D → D is an isomorphism of K0 ⊗Qp E-modules;

- θD is a filtration on DK := D⊗K0 K such that θjDDK = 0 if j � 0, and θjDDK = DK if j � 0.

Here φ⊗ 1 : K0 ⊗ E → K0 ⊗ E sends x⊗ y to φ(x)⊗ y.

2.1.2. Definition A filtered φ-G-torsor with coefficients in E is a triple (T, φT , θT ) such that

- T is a G-torsor over SpecK0 ⊗ E;
- φT : (φ⊗ 1)∗T → T is a G-equivariant isomorphism over SpecK0 ⊗Qp E;
- θT is an exact ⊗-filtration on TK := T ×

SpecK0⊗QpE
SpecK ⊗Qp E.

More precisely, θT is an exact ⊗-filtration on the functor Rep(G)→ VectK⊗E defined by V 7→ TK×GV .
By Tannakian theory, a G-torsor always comes from a rigid exact ⊗-functor Rep(G) → VectK⊗E , so
we don’t distinguish them.

2.1.3. Remark (1) We can define the notion of filtered φ-G-torsor with coefficient in E for any
smooth E-group scheme G.

(2) By Tannakian theory and the functoriality of the twisted product − ×G −, a filtered φ-G-
torsor (T, φT , θT ) is nothing but a rigid exact tensor functor from RepG(E) to the category of filtered
φ-modules with coefficients in E.

For ease of notation, we write −⊗− for −⊗Qp −.

2.1.4. Pushforward Let f : G→ H be a group scheme morphism.

Let (T, φT , θT ) be a filtered φ-G-torsor. Define T ′ := T×GH := T×H/{(t, h) ∼ (g−1 ·t, f(g)·h), g ∈
G, t ∈ T, h ∈ H}. Then T ′ is an H-torsor with H-action defined by h · (t, h′) = (t, hh′). Since
(φ ⊗ 1)∗T ×G H ∼= (φ ⊗ 1)∗(T ×G H) canonically, we can define φT ′ := φ ×G H : (φ ⊗ 1)∗T ′ → T ′.

Recall that θT is a functor Rep(G)→ VectK⊗E . Define θT ′ := f∗(θT ) to be the composite Rep(H)
f∗−→

Rep(G) → VectK⊗E . The triple (T ′, φT ′ , θT ′) is a filtered φ-H-torsor. We write f∗(T, φT , θT ) for
(T ′, φT ′ , θT ′).
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2.1.5. Framing Let (T, φT , θT ) be a filtered φ-G-torsor. Suppose the underlying G-torsor T is a
trivial G-torsor, there exists a canonical embedding

ι : T (K0 ⊗ E) ↪→ T (K0 ⊗ E)×{pt},φ⊗1 {pt} = (φ⊗ 1)∗T (K0 ⊗ E), {pt} = (SpecK0 ⊗ E)(K0 ⊗ E)

A framing of T is an element ξ ∈ T (K0 ⊗ E). Since T is a G-torsor, there exists a unique element
Xξ ∈ G(K0 ⊗ E) such that φT (ι(ξ)) = Xξ · ξ.

Let g ∈ G(K0⊗E). Now we change the framing from ξ to g·ξ. We have φT (ι(g·ξ)) = φ(g)φT (ι(ξ)) =
φ(g)Xξ · ξ = φ(g)Xξg

−1g · ξ. Therefore

Xg·ξ = φ(g)Xξg
−1.

Let f : G → H be a group scheme homomorphism. Let ξ ∈ T (K0 ⊗ E) be a framing. Then
f∗(ξ) ∈ (T ×G H)(K0 ⊗ E) is a framing of f∗(T, φT , θT ). It is easy to see that

Xf∗ξ = f(Xξ).

2.1.6. Weak admissibility For simplicity, we define the weak admisibility of a filtered φ-G-torsor
via Tannakian theory. A filtered φ-G-torsor T is weakly admissible if for any algebraic representation
G→ GL(V ), the twisted product T ×G V is a weakly admissible filtered φ-module.

2.1.7. Crystalline representations Since the covariant Fontaine’s functors Vcris and Dcris are rigid
exact tensor functors (see the paragraph before [C11, 9.1.9]), the category of weakly admissible filtered
φ-G-torsors is equivalent to the category of crystalline representations valued in G. We also denote
by Vcris and Dcris the equivalences of categories in the G-valued case.

2.2. Parabolic liftings

Let P be a parabolic subgroup of G with unipotent radical U and Levi factor L. Let πL : P → L
be the quotient map. Let (T̄ , φT̄ , θT̄ ) be a fixed filtered φ-L-torsor with coefficients in E.

Define

Lift(T̄ ) = Lift(T̄ , φT̄ , θT̄ )

= {(T, φT , θT ) : filtered φ-P -torsors valued in E such that (πL)∗T = T̄}/ ∼

where the equivalence relation ∼ is defined to be isomorphisms of filtered φ-P -torsors respecting (πL)∗.

2.2.1. Throughout this section, we assume T̄ admits a framing ξ̄ ∈ T̄ (K0 ⊗ E). By fixing ξ̄, we also

fixed a framing of ι∗T̄ for various sections ι : L ↪→ P .
In particular, for two different sections ι1, ι2 : L → P , the two P -torsors T̄ ×L,ι1 P and T̄ ×L,ι2 P

are identified without further mention.
Moreover, since the base scheme is a disjoint union of spectra of perfect fields, any element of Lift(T̄ )

admits a framing ([Se02, Proposition 6, III.2.1]).
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2.2.2. Lemma Let T ∈ Lift(T̄ ). Then there exists a section ι : LK⊗E ↪→ PK⊗E such that

θT = ι∗(θT̄ )

(ι is a group scheme morphism and πL ◦ ι = id.)

Proof. Since G is smooth and the coefficient ring is of characteristic 0, the exact ⊗-filtration θT is
Zariski-locally splitable on SpecK ⊗ E ([SN72, IV.2.4]). Since K ⊗ E is a direct sum of fields, θT
is splittable. So θT is the canonical filtration associated to a graded tensor functor, or equivalently
a cocharacter ω : (Gm)K⊗E → PK⊗E ([SN72, IV.1.3]). We choose an arbitrary embedding LK⊗E ⊂
PK⊗E . The image of ω is contained in a maximal torus, and hence contained in a conjugate of LK⊗E
(say LK⊗E =

∐
i:K↪→E LEi , the image of ω ⊗ Ei is contained in a conjugate of LEi).

Choose a section ι : LK⊗E → PK⊗E such that ω(Gm) ⊂ ι(LK⊗E). We have ι∗(πL)∗(ω) = ω. Now
it is clear that θT̄ is the canonical exact ⊗-filtration associated to (πL)∗(ω), and θT = ι∗(θT̄ ) �.

2.2.3. The adjoint filtered φ-module Recall that the upper central series of U defines a filtration

{1} = Us ⊂ Us−1 ⊂ · · · ⊂ U0 = U

such that each of gri U := Ui/Ui+1 is abelian. We have

LieU =

s⊕
i=1

gri U = gr• U

Since P = LnU , a section L→ P induces an (adjoint) action Ly U . Let ad : L→ Aut(U) be the
induced group scheme homomorphism. Note that the abelianization gr•(ad) : L → Aut(LieU) does
not depend on the choice of L→ P .

Define

gr•(ad)T̄ := gr•(ad)∗(T̄ , φT̄ , θT̄ )

2.2.4. Lemma If T̄ is weakly admissible, then so is gr•(ad)T̄ .

Proof. By Tannakian theory (more precisely by the fact that the Tannakian category is generated by
ρ⊗ ρ∗ where ρ is any faithful representation of the Tannakian group), a Galois representation GK →
Aut(LieU)(E) is crystalline if and only if for some faithful algebraic representation Aut(LieU) →
GL(V ) the representation GK → GL(V (E)) is crystalline. Since the composition L→ Aut Lie(U)→
GL(V ) is an algebraic representation, GK → GL(V (E)) is crystalline if GK → L(E) is crystalline.
The first claim is proved by passing to the category of crystalline representations via Vcris. �

2.3. G-ordinarity



6 LIN, ZHONGYIPAN

2.3.1. Newton polygon of isocrystals Let K̆ be the p-adic completion of the maximal unram-

ified extension of K0. By the Diedonné-Manin classification, the category of isocrystals over K̆ is
a semisimple category. The simple objects can be classified by rational numbers s/r, where r is a
positive integer and s is an integer coprime to r. Denote by Dr,s the simple object labeled by the
rational number s/r. Dr,s has dimension r, and we call s/r the slope of Dr,s.

Let (D,φ) be an isocrystal over K0. Then D̆ = K̆⊗K0D is a direct sum of simple objects Dri,si . We
call the numbers si/ri that appear in the direct sum decomposition the slopes of D. Say D has slopes
{α0 < · · · < αn} with multiplicities {µ0, · · · , µn}. The Newton polygon of D is the convex polygon
with leftmost endpoint (0, 0), and having µi consecutive segments of horizontal distance 1 and slope
αi.
Lemma If all slopes of D are positive numbers, then for any lattice L ⊂ D, we have

lim
n→∞

φnL = {0}

(in the sense that the diameter of the bounded sets φnL converges to 0.) Note that L is not assumed
to be φ-stable.

Proof. Let N be the product of the denominator of the slopes of D. By the Diedonné-Manin classifica-
tion, there is a basis {x1, .., xt} of K̆ ⊗K0 D such that φNxi = pSixi for positive integers Si, 1 ≤ i ≤ t.
The p-adic topology on D can be defined by

|λ1x1 + · · ·+ λtxt| = max
1≤i≤t

(|λi|)

where λi ∈ K̆, 1 ≤ i ≤ t. For any x ∈ D, |φNx| < 1
p |x|. Therefore for any lattice L, we have

limn→∞ φ
nNL = {0}. Replacing L by φkL, 1 ≤ k < N , we have limn→∞ φ

k+nNL = {0}. Combining
these, we have limn→∞ φ

nL = {0}. �

Corollary If the slopes of D are either all positive numbers or all negative numbers, the map 1− φ :
D → D is invertible.

Proof. If the slopes of D are all positive numbers, then 1 + φ + φ2 + · · · converges and is an inverse
of 1− φ.

If the slopes of D are all negative numbers, then the slopes of the dual isocrystal D∨ are all positive
numbers. By choosing a basis of D, the matrix of φ∨ is the transpose inverse of that of φ, and
(1− φ−t) = −φ−t(1− φt)−1 = −φ−t(1 + φt + φ2t + · · · ) is invertible. �

2.3.2. Definition Let (T, φT , θT ) be a filtered φ-P -torsor. T̄ = (πL)∗T is a filtered φ-L-torsor. Note

that since Aut(LieU) is a general linear group, gr•(ad)(T̄ ) is an filtered isocrystal with coefficients.
We say θT , T , or T̄ is G-ordinary if the filtration θgr•(ad)(T̄ ) on the vector space gr•(ad)(T̄ ) satisfies

θ0
gr•(ad)T̄

(gr•(ad)T̄ ) = 0. In other words, the Hodge polygon of θgr•(ad)T̄ lies below the x-axis except

for the left endpoint.
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Lemma A weakly admissible filtered φ-G torsor T is G-ordinary if and only if all Hodge-Tate weights
of the crystalline representation Vcris(gr•(ad)T̄ ) are negative integers, where Vcris is the covariant
Fontaine functor.

Proof. It is a standard p-adic Hodge theory calculation. See for example [C11, section 8.3]. �

2.3.3. Dynamic methods We need some results from [Crd11, Section 4.1]. Let X be a scheme over
a base scheme S, and fix a Gm-action m : Gm ×X → X on X. For each x ∈ S(S), we say

lim
t→0

m(t, x) exists,

if the morphism Gm → X, t 7→ m(t, x) extends a a morphism A1 → X.
Let λ be a cocharacter of a reductive group G. Define the following functor on the category of

K⊗E-algebras PG(λ)(k) = {g ∈ G(k)| limt→0 λ(t)gλ(t)−1 exists.} where k is a general K⊗E-algebra.
PG(λ) is a smooth subgroup of G, and all parabolic subgroups of G are of the form PG(λ) for some

λ.
Define UG(λ)(k) = {g ∈ G(k)| limt→0 λ(t)gλ(t)−1 = 1}. Then UG(λ) ⊂ PG(λ) is the unipotent

radical.
Denote by LG(λ) the quotient PG(λ)/UG(λ).
Let f : G → H be a group scheme morphism. We have induced group scheme morphisms PG(f) :

PG(λ)→ PH(f∗λ) and UG(f) : UG(λ)→ UH(f∗λ) ([Crd11, Theorem 4.1.7]).

A cocharacter λ of G induces a filtration F (λ) on the trivial G-torsor ([SN72, IV 2.1.5]).

Theorem Consider the adjoint representation Ad : G→ GL(Lie(G)). We have

Lie Aut⊗(F (λ)) = F (λ)0(Lie(G))

and

Lie Aut⊗!(F (λ)) = F (λ)1(Lie(G)).

As a consequence, we have PG(λ) = Aut⊗(F (λ)) and UG(λ) = Aut⊗!(F (λ)).

Proof. The first paragraph is a special case of [SN72, IV 2.1.4.1] where α = 0, 1. The second paragraph
follows from [Crd11, Theorem 4.1.7(4)]. �

2.3.4. Suppose PK⊗E = PG(λ) for some cocharacter λ of G. The cocharacter λ induces a filtration
F (λ) on GK⊗E .

Let (T, φT , θT ) be a G-ordinary filtered φ-P -torsor whose underlying G-torsor is a trivial G-torsor.
By Lemma 2.2.2, there exists an embedding ι : LK⊗E → PK⊗E such that θT = ι∗(θT̄ ). We’ll explicitly
construct ι when T is G-ordinary and show that such an embedding is unique. Write i for the
embedding PK⊗E → GK⊗E .
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Proposition There exists a unique embedding ι : LK⊗E → PK⊗E such that Aut⊗(i∗θT ) ∩ PK⊗E ⊂
ι(LK⊗E).

Proof. The intersection of two parabolics of a reductive group always contains a maximal torus ([M18,
19.33]). Let S ⊂ Aut⊗(i∗θT ) ∩ PK⊗E be a maximal torus. Let S0 ⊂ S be the maximal subtorus such
that the centralizer Z(S0) is (an embedding of) the Levi factor LK⊗E of PK⊗E .

Let UK⊗E be the unipotent radical of PK⊗E . We have the Levi decomposition

LiePK⊗E = LieZ(S0)⊕ Lie(UK⊗E) = LieZ(S0)⊕
⊕

α∈Φ+(S0,G)

gα.

where gα is the α-weight space and Φ+(S0, G) is the set of weights occurring in Lie(UK⊗E).
By Theorem 2.3.3, Lie Aut⊗(i∗θT ) = (i∗θT )0(LieG). Since T isG-ordinary, we have θ0

gr•(ad)(T̄ )
(gr•(ad)(T̄ )) =

0. It is clear that the filtration i∗θT on LieG and the filtration θgr•(ad)(T̄ ) on gr•(ad)(T̄ ) = Lie(UK⊗E)

are compatible. So i∗θ
0
T (LieG) ∩ Lie(UK⊗E) = 0.

Consider the S0-weight decomposition of Lie Aut⊗(i∗θT ) ∩ LiePK⊗E . By the previous paragraph,
there is no positive S0-weights, and therefore Lie Aut⊗(i∗θT )∩LiePK⊗E ⊂ LieZ(S0). So we’ve shown
Aut⊗(i∗θT ) ∩ PK⊗E ⊂ Z(S0).

It remains to show the uniqueness of ι. Let g ∈ P (K ⊗ E) and suppose Aut⊗(i∗θT ) ∩ PK⊗E ⊂
gZ(S0)g−1. The Proposition follows from the fact that S0 ⊂ gZ(S0)g−1 implies gZ(S0)g−1 = Z(S0).

�

Lemma If θT = ι∗θT̄ , then Aut⊗(i∗θT ) ∩ PK⊗E ⊂ ι(LK⊗E).

Proof. Choose a splitting ω of θT̄ . Choose a maximal torus S of the centralizer of ω. By Theorem
2.3.3 and Theorem [Crd11, 4.1.7(4)], we have

Aut⊗(i∗θT ) = LiePG(ω) =
⊕
〈α,ω〉≥0

gα

where α ranges from all S-roots of G, and gα is the S-weight space of weight α. Meanwhile, PK⊗E =
PG(λ) for some cocharacter λ : Gm → S. Since T is G-ordinary, θ0

gr•(ad)(T̄ )
(gr•(ad)(T̄ )) = 0, which

implies for any root α ∈ Φ(S,G) such that 〈α, λ〉 > 0 we have 〈α, ω〉 < 0. This lemma now follows
from the S-weight decomposition of the Lie algebra of Aut⊗(i∗θT ) ∩ PK⊗E . �

2.3.5. Lemma If T is G-ordinary, the map 1− φgr•(ad)T̄ is invertible.

Proof. By Corallary 2.3.1, it suffices to show all slopes of gr•(ad)T̄ are negative numbers.
The G-ordinarity condition guarantees the Hodge polygon of gr•(ad)T̄ lies below the x-axis (except

for the left endpoint which is the origin). Weak admissibility of gr•(ad)T̄ implies the Newton polygon
of gr•(ad)T̄ and the Hodge polygon of gr•(ad)T̄ have the same right endpoint, and the Newton polygon
of gr•(ad)T̄ lies on or above the Hodge polygon of gr•(ad)T̄ . In particular, the largest slope of the
Newton polygon is smaller or equal to the largest slope of the Hodge polygon. In other words, all
slopes of the Newton polygon are negative numbers. �
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2.3.6. Lemma Let T be a filtered φ-P -torsor. Assume T is weakly admissible and G-ordinary.

A section ι : LK0⊗E ↪→ PK0⊗E induces a projection PK0⊗E
πU−−→ UK0⊗E and a decomposition

PK0⊗E = LK0⊗EUK0⊗E .
There exists a unique section ι such that φT = ι∗(φT̄ ). (See 2.2.1.)

Proof. For ease of notation, write L, P , U for LK0⊗E , PK0⊗E , and UK0⊗E , respectively. Fix a framing
ξ of T . Write T̄ for (πL)∗T .

We have fixed a framing ξ̄ ∈ L(K0 ⊗ E) of T̄ . Choose a section ι0 : L ↪→ P , which induces a

projection P
πU,0−−→ U . There exists a unique isomorphism of P -torsors (ι0)∗T̄ ∼= T under which (ι0)∗ξ̄

is identified with ξ. We identify (ι0)∗T̄ and T via this isomorphism. By remark 2.1.4, φT = (ι0)∗(φT̄ )
if and only if Xξ = ι0(Xξ̄). Or equivalently, πU,0(Xξ) = 1.

Set M0 := πU,0(Xξ), and A0 := ι0(πL(Xξ)). Then Xξ = A0M0 (we identify U as a normal subgroup

of P ). Let ι : L ↪→ P be another section with induced projection P
πU−−→ U . Set A := ι(πL(Xξ)) and

M := πU (Xξ). Note that there exists N ∈ U(K0 ⊗ E) such that A = NA0N
−1 ([SN72, IV 2.2.5.3]).

Since
AM = A0M0 = Xξ

we have NA0N
−1M = A0(A−1

0 NA0N
−1M) = A0M0, and thus

M0 = AdA−1
0

(N)N−1M.

For ease of notation, we write φAd := AdA−1
0

, and M0 = φAd(N)N−1M .

For an integer 1 ≤ i ≤ s, write gri for the projection Ui−1 → Ui−1/Ui. We use additive notation
when working with abelian groups.

We have
gr1M = (1− φAd) gr1(N) + gr1M0.

Note that (1 − φAd) gr1(N) = (1 − φ−1
gr• ad T̄

) gr1(N). By Lemma 2.3.5, (1 − φAd) : LieU → LieU is

invertible. We choose N ∈ U such gr1(N) = (φAd − 1)−1M0 (choosing ι is equivalent to choosing N).
Hence we can arrange it so that gr1M = 0.

Now we assume gr1M0 = 0, that is, M0 ∈ U1. We choose ι such that N ∈ U1. We have

gr2M = (1− φAd)gr2(N) + gr2M0.

We can kill gr2(M) in a similar manner. We repeat this process, and will ultimately kill M .
The uniqueness of ι is a byproduct of the proof of the existence part. In each step of the above

algorithm, the choice is unique. �

Denote by Scin(P ) the set of sections L ↪→ P . Note that Scin(P ) is a U -torsor ([SN72, IV 2.2.5.3]).

2.3.7. Let (T̄ , φT̄ , θT̄ ) be a filtered φ-L-torsor which is weakly admissible and G-ordinary (with respect
to the parabolic P ).

The following map
δ : Scin(PK0⊗E)× Scin(PK⊗E)→ Lift(T̄ )

(ιφ, ιθ) 7→ (T, (ιφ)∗φT̄ , (ιθ)∗θT̄ )

is a surjection by Lemma 2.3.6 and Lemma 2.2.2.
Note that U(K0 ⊗ E) acts diagonally on Scin(PK0⊗E)× Scin(PK⊗E).
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Theorem We have bijections

Lift(T̄ ) ∼= {Orbits of Scin(PK0⊗E)× Scin(PK⊗E) under U(K0 ⊗ E) action}
∼= Scin(PK⊗E)

Proof. We only need to show two liftings of T̄ are equivalent if and only if they lie in the same
UK0⊗E-orbit.

Let δ(ι1φ, ι
1
θ) and δ(ι2φ, ι

2
θ) be two liftings. Let h : δ(ι1φ, ι

1
θ)
∼= δ(ι2φ, ι

2
θ) be an isomorphism of filtered

φ-G-torsors whose pushforward along πL is the identity map. Identify the underlying trivial PK0⊗E-
torsor with PK0⊗E . Then h is just conjugation by an element u of the unipotent radical U(K0 ⊗ E).
In particular,

(ι1φ)∗φT̄ = (uι2φu
−1)∗φT̄ , (ι1θ)∗θT̄ = (uι2θu

−1)∗θT̄ .

By Proposition 2.3.4 and Lemma 2.3.4, two different sections ιθ : LK⊗E ↪→ PK⊗E gives two different
filtrations (ιθ)∗θT̄ . Therefore we have ι1θ = uι2θu

−1. Similarly, by Lemma 2.3.6, we have ι1φ = uι2φu
−1.

So (ι1φ, ι
1
θ) and (ι2φ, ι

2
θ) are in the same U -orbit, as desired. �

The theorem above is reminiscent of the double complex computing the cohomology of filtered
φ-modules.

2.3.8. Recall

{1} = Us ⊂ Us−1 ⊂ · · · ⊂ U0 = U

is the upper central series of U .

Corollary Let Ti be a filtered φ-P/Ui-torsor for some 1 ≤ i ≤ s, which can be lifted to a filtered
φ-P -torsor. Assume T̄ := Ti mod U/Ui is a G-ordinary and weakly admissible filtered φ-L-torsor.

The set of filtered φ-P/Ui+1-torsors which lifts Ti and admits a lifting to to a filtered φ-P -torsor is
an Qp-affine space isomorphic to Ui(K ⊗ E)/Ui+1(K ⊗ E).

2.4. Crystallinity of parabolic liftings

2.4.1. Enough gaps in Hodge-Tate weights We say a crystalline representation ρ : GK → L(E)
has enough gaps in Hodge-Tate weights with respect to P if the adjoint representation

GK
ρ−→ L(E)→ Aut(LieU)(E)

has labelled Hodge-Tate weights slightly less then 0 in the sense of [EG19, 6.3].
We remark that having enough gaps in Hodge-Tate weights is strictly stronger than being G-

ordinary. More precisely, G-ordinarity does not require one of the inequalities in [EG19, 6.3] to be
strict.

2.4.2. Proposition A filtered φ-P -torsor T is weakly admissible if the filtered φ-L-torsor (πL)∗(T )
is weakly admissible with respect to P .

Proof. We first remark this proposition for general linear groups is a reformulation of the standard
fact that the category of weakly admissible filtered φ-modules is an abelian category (see, for example,
[C11, Proposition 8.2.10]).

Write T̄ = (πL)∗(T ). The parabolic P of G is defined by a cocharacter λ of G.
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Let f : G→ GL(V ) be an algebraic representation. Then we have induced maps

PG(λ)(f) : P = PG(λ)→ PGL(V )(f∗λ) =: P ′

and

LG(λ)(f) : L = LG(λ)→ LGL(V )(f∗λ) =: L′.

The filtered φ-L′-torsor (LG(λ))∗(T̄ ) is weakly admissible because T̄ is weakly admisible. Write i for
the embedding P ⊂ G. Since

(LG(λ)(f))∗(πL)∗T = (πL′)∗(PG(λ)(f))∗T

using the result for GL(V ) it follows that i∗T is weakly admissible as a filtered φ-G-torsor by stan-
dard Tannakian theory arguments. Again by Tannakian theory or more precisely the fact that the
Tannakian category of representations of P are generated by a single faithful embedding, T is weakly
admissible as a filtered φ-P -torsor. �

Theorem 2.3.7 and Proposition 2.4.2 together give a complete description of parabolic liftings of
G-ordinary crystalline representations, which allow us to prove Theorem (A) with the help of some
Galois cohomology arguments.

2.4.3. Let P be a parabolic of G with the unipotent radical U and Levi factor L. Let ρ : GK → L(E)
be a Galois representation. A parabolic lifting is a commutative diagram

GK
ρ̃ //

ρ

""

P (E)

{{
L(E)

Theorem If ρ is crystalline with enough gaps in Hodge-Tate weights with respect to P , any parabolic
lifting ρ̃ : GK → P (E) is crystalline.

We’ll prove the theorem by inductively constructing weakly admissible filtered φ-P/Ui-torsors which
corresponds to ρ̃ mod Ui via Fontaine’s functors Vcris and Dcris.

Proof. Since crystallinity is insensitive to base change, we assume the filtered φ-L-torsor Dcris(ρ) has
a trivial underlying L-torsor, by possibly enlarging the coefficient field E.

By [EG19, Lemma 6.3.1], having enough gaps in Hodge-Tate weights implies for all i,

H1
f (GK , Ui/Ui+1) = H1(GK , Ui/Ui+1)

where H1
f is the subgroup of crystalline extensions. Here Ui/Ui+1 is endowed with the adjoint action

GK
ρ−→ L(E)

Ad−−→ Aut(Ui/Ui+1). Write ρi for ρ̃ mod Ui.
We argue by induction. Assume ρi : GK → P/Ui is crystalline (and admits a lifting to P ). By

Corollary 2.3.8 and Proposition 2.4.2, the set of crystalline representations GK → P/Ui+1 which lifts
ρi and admits a lifting to P is an affine space isomorphic to

Ui(K ⊗ E)/Ui+1(K ⊗ E)
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which has the same Qp-dimension as H1
f (GK , Ui/Ui+1). On the other hand, the set of all liftings (not

necessarily crystalline) is an H1(GK , Ui/Ui+1)-torsor. An injective, affine map of an affine space into
another affine space

{crystalline representations valued in P/Ui+1 lifting ρi and admits a lifting to P}
↪→{representations valued in P/Ui+1 lifting ρi}

of the same dimension is an isomorphism. By comparing the dimension, we conclude ρi+1 is crystalline.
�

2.4.4. Remark We remark that proving Theorem (A) using the strategy of the proof of Proposition
2.4.2 will not work. This is because G-ordinarity is not preserved by PG(λ)(f). (Hint: consider the
simplest example Sym2 : GL(V )→ GL(Sym2(V )).)

2.5. Extensions of anti-G-ordinary filtered φ-L-torsors

We give a more complete picture of the theory of parabolic extensions by working out the anti-G-
ordinary case.

2.5.1. Definition Let (T, φT , θT ) be a filtered φ-P -torsor. T̄ = (πL)∗T is a filtered φ-L-torsor. We

say θT , T , or T̄ is anti-G-ordinary if the filtration θgr•(ad)(T̄ ) on the vector space gr•(ad)(T̄ ) satisfies

θ1
gr•(ad)T̄

(gr•(ad)T̄ ) = gr•(ad)T̄ . In other words, the Hodge polygon of θgr•(ad)T̄ lies above the x-axis

except for the left endpoint.

2.5.2. Proposition Let (T, φT , θT ) be a weakly admissible, anti-G-ordinary filtered φ-P -torsor.
(1) There is a unique section ι : LK0⊗E ↪→ PK0⊗E such that φT = ι∗((πL)∗φT ).
(2) For any section ι : LK⊗E ↪→ PK⊗E , ι∗((πL)∗θT ) = θT .
(3) For any section ι : LK0⊗E ↪→ PK0⊗E , (T, φT , θT ) ∼= ι∗((πL)∗(T, φT , θT )).

Proof. (1) The proof of Lemma 2.3.6 works verbatim.
(2) We adapt the arguments of subsection 2.3.4. Choose any section ι : LK⊗E ↪→ PK⊗E . Let

S ⊂ Aut⊗(i∗θT ) ∩ PK⊗E be a maximal torus. Let S0 ⊂ S be the maximal subtorus such that the
centralizer Z(S0) is (an embedding of) the Levi factor LK⊗E of PK⊗E . Let UK⊗E be the unipotent
radical of PK⊗E . We have the Levi decomposition

LiePK⊗E = LieZ(S0)⊕ Lie(UK⊗E) = LieZ(S0)⊕
⊕

α∈Φ+(S0,G)

gα.

By Theorem 2.3.3, Lie Aut⊗(i∗θT ) = (i∗θT )0(LieG). Since T is anti-G-ordinary, we have

θ1
gr•(ad)(T̄ )(gr•(ad)(T̄ )) = gr•(ad)(T̄ ).

It is clear that the filtration i∗θT on LieG and the filtration θgr•(ad)(T̄ ) on gr•(ad)(T̄ ) = Lie(UK⊗E)

are compatible. So i∗θ
0
T (LieG)∩ Lie(UK⊗E) ⊃ i∗θ1

T (LieG)∩ Lie(UK⊗E) = Lie(UK⊗E). Thus we have

(†) UK⊗E ⊂ Aut⊗(i∗θT ).
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By Lemma 2.2.2, ι′∗((πL)∗θT ) = θT for some ι′. There exists anN ∈ U(K⊗E) such that ι′ = NιN−1.
By (†), NθTN−1 = θT , and therefore ι∗((πL)∗θT ) = θT .

(3) is a consequence of (1) and (2). �

2.5.3. Corollary Let P be a parabolic of G with the unipotent radical U and Levi factor L. Let
ρ : GK → L(E) be a Galois representation. If ρ is crystalline and anti-G-ordinary with respect to P ,
there is one and only one crystalline parabolic lifting ρ̃ : GK → P (E) of ρ.

Proof. By the previous lemma, up to isomorphism, there exists a unique parabolic extension of the fil-
tered φ-P -torsor which lifts Dcris(ρ). The corollary follows from the equivalence of categories explained
in 2.1.7. �

References

[BC08] O. Brinon and B. Conrad. CMI summer school notes on p-adic Hodge theory.
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